Bachelor of Technology (Electronics & Communication Engineering)

Scheme of Studies/Examination

Semester III

S. No.	Course No.	Course Title		Teaching Schedule Allotment of Marks					Duration of Exam (Hrs)		
			L	Т	Р	Hours/Week	Theory	Sessional	Practical	Total	
1	AS- 201N	Mathematics-III	3	1	0	4	75	25	0	100	3
2	ECE- 201N	Signals & Systems	3	1	0	4	75	25	0	100	3
3	ECE- 203N	Electronic Devices	3	1	0	4	75	25	0	100	3
4	ECE- 205N	Network Analysis & Synthesis	3	1	0	4	75	25	0	100	3
5	ECE- 207N	Digital Electronics	3	1	0	4	75	25	0	100	3
6	ECE- 209N	Analog Communications	3	1	0	4	75	25	0	100	3
7	ECE- 211N	Signals & Systems Lab	0	0	3	3	0	40	60	100	3
8	ECE- 213N	Digital Electronics Lab	0	0	3	3	0	40	60	100	3
9	ECE- 215N	Analog Communications lab	0	0	3	3	0	40	60	100	3
	~~~~	Total	18	6	9	33	450	270	180	900	
10	MPC- 201N	Environmental Studies*	3	0	0	3	75	25	0	100	3

* MPC-201N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

# Bachelor of Technology (Electronics & Communication Engineering) Scheme of Studies/Examination

Semester IV	
-------------	--

S. No.	Course No.	Course Title		Teaching Schedule				Allotme	nt of Marks		Duration of Exam (Hrs)
			L	Т	Р	Hours/Week	Theory	Sessional	Practical	Total	
1	AS- 206N	Numerical Analysis	4	0	0	4	75	25	0	100	3
2	ECE- 202N	Data Structures & Algorithms	3	1	0	4	75	25	0	100	3
3	ECE- 204N	Electronics Measurements & Instruments	3	1	0	4	75	25	0	100	3
4	ECE- 206N	Electromagnetic Theory	3	1	0	4	75	25	0	100	3
5	ECE- 208N	Analog Electronics	3	1	0	4	75	25	0	100	3
6	ECE- 210N	Computer Architecture & Organization	3	1	0	4	75	25	0	100	3
7	ECE- 212N	Data Structures Lab	0	0	3	3	0	40	60	100	3
8	ECE- 214N	Electronics Measurements & Instruments Lab	0	0	3	3	0	40	60	100	3
9	ECE- 216N	Analog Electronics lab	0	0	3	3	0	40	60	100	3
		Total	19	5	9	33	450	270	180	900	
10	MPC- 202N	Energy Studies*	3	0	0	3	75	25		100	3

* MPC-202N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

Note: All the students have to undergo six weeks industrial training after  $IV^{th}$  semester and it will be evaluated in  $V^{th}$  semester.

AS-201N		MA	ATHEMATIC	S-III				
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time		
3	1	0	75	25	100	3 hrs		
Purpose	To acquaint the	e students with the	basic use of PI	DE, Linear Pro	ogramming p	roblems,		
	Fouri	Fourier series and transforms, Complex variables and Probability.						
	Course Outcomes							
CO1	This section is concerned mainly with Fourier series. However, the underlying ideas can							
	also be extended	d to nonperiodic	phenomena.	This leads to	Fourier in	tegrals and		
	transforms which	n are very much	useful in solv	ving the initi	al and bour	ndary value		
	problems.							
CO 2	Students will lea	rn about the forma	ation and solut	tion the partia	al differentia	l equations.		
	First order PDE of	of any degree by us	ing Charpit's 1	nethod will b	e discussed i	n details. In		
		solve homogeneou			coefficients a	and variable		
	A	and LPP will be co						
CO 3	Complex analysi	s is concerned wi	th generalizati	ion of the fa	miliar real f	unctions of		
		detailed knowledg	ge is an absolu	te necessity in	n practical w	ork to solve		
	engineering probl	ems.						
<b>CO 4</b>		v provides models of	· ·					
	-	involving chance						
	Ũ	ng applications, for		÷		•		
	processes, robotic	s, and automatizati	on in general,	production pla	anning and so	o on.		

## UNIT-I

## Fourier Analysis

**Fourier series:** Euler's formulae, Orthogonality conditions for the Sine and Cosine functions, Dirichlet's conditions, Fourier expansion of functions having points of discontinuity, Change of interval, Odd and even functions, Half-range series.

**Fourier Transforms:** Fourier integrals, Fourier transforms, Fourier Cosine and Sine transforms, Properties of Fourier transforms, Convolution theorem, Parseval's identity, Fourier transforms of the derivative of a function, Application of transforms to boundary value problems (Heat conduction and vibrating string).

## UNIT-II

## Partial Differential Equations and LPP

Formation and Solutions of PDE, Lagrange's Linear PDE, First order non-linear PDE, Charpit's method, Homogeneous linear equations with constant coefficients, Method of separation of variables.

Solution of linear programming problems: using Graphical and Simplex methods.

## UNIT-III

## **Theory of Complex Variables**

A review of concept of functions of a complex variable, Limit, continuity, differentiability and analyticity of a function. Basic elementary complex functions (exponential functions, trigonometric & Hyperbolic functions, logarithmic functions) Cauchy-Riemann Equations.

Line integral in complex plane, definition of the complex line integral, basic properties, Cauchy's integral theorem, and Cauchy's integral formula, brief of Taylor's, Laurent's and Residue theorems (without proofs).

## UNIT-IV

(12 hrs)

(11 hrs)

(11 hrs)

## **Probability theory:**

## (11 hrs)

A review of concepts of probability and random variables: definitions of probability, addition rule, conditional probability, multiplication rule, Conditional Probability, Mean, median, mode and standard deviation, Bayes' Theorem, Discrete and continuous random variables, probability mass, probability density and cumulative distribution functions, mathematical expectation, moments, moment generating function.

Standard Distributions: Binomial, Poisson and Normal distribution.

## **References Books:**

- 1. E. Kreyszig : Advanced Engineering Mathematics, Wiley India.
- 2. B. V. Ramana: Engineering Mathematics, Tata McGraw Hill.
- 3. R.K. Jain, S.R.K. Iyengar: Advanced Engineering Mathematics, Taylor & Francis.
- 4. <u>Murray R Spiegel</u>: Schaum's Outline of Complex Variables, McGraw Hill Professional.
- 5. Michael D. Greenberg: Advanced Engineering Mathematics, Pearson Education, Prentice Hall.

**Note:** The Examiners will set nine questions: first question will be short answer type (covering the entire syllabus) and another eight questions will be set taking two questions from each unit. Students will have to attempt five questions in all; first question will be compulsory and other four questions, selecting one from each unit. All questions will carry equal marks.

ECE-	Signals and Systems								
201N									
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time			
3	1	0	75	25	100	3 Hr.			
Purpose		To familiarize the students with the basic concepts of signals and systems, Random variables, discretisation of analog signals, fourier series, fourier transform and laplace transform.							
		Course C	outcomes						
CO1	Introduce and classi	fy signals and sys	stems based o	n their proper	·ties.				
CO2	To understand the systems.	basic concepts	of random	variables and	Linear ti	me invariant			
CO3	Familiarization with series.	Familiarization with the sampling process and spectral analysis of signals using fourier series.							
CO4	Apply transform teo systems	chniques to anal	yze continuo	us-time and d	iscrete-tim	e signals and			

**Introduction to Signals:** Continuous and discrete time signals, deterministic and stochastic signals, periodic and a periodic signals, even and odd signals, energy and power signals, exponential and sinusoidal signals and singular functions. Signal representation in terms of singular functions, orthogonal functions and their use in signal representation

**Introduction to Systems:** Linear and non-linear systems, time invariant and time varying systems, lumped and distributed systems, deterministic and stochastic systems, casual and non-causal systems, analog and discrete/digital memory and memory less systems.

## Unit-II

**Random Variables:** Introduction to Random Variables, pdf, cdf, moments, distributions, correlation functions.

**Linear Time Invariant Systems**: Introduction to linear time invariant (LTI) systems, properties of LTI systems, convolution integral, convolution sum, causal LTI systems described by differential and difference equations. Concept of impulse response

## Unit-III

**Discretisation of Analog Signals:** Introduction to sampling, sampling theorem and its proof.Effect of undersampling, reconstruction of a signal from sampled signal.

**Fourier Series** : Continuous time fourier series (CTFS), Properties of CTFS, Convergence of fourier series, Discrete time Fourier Series (DTFS), Properties of DTFS, Fourier series and LTI system, Filtering.

## Unit-IV

**Fourier Transform:** Continuous Time Fourier Transform (CTFT), Properties of CTFT, Systems characterized by linear constant- coefficient differential equations.

Discrete time fourier transform (DTFT), Properties of DTFT, Duality, Systems characterized by Linear constant coefficient difference equations.

**Laplace Transform**: Introduction to Laplace transform, Region of convergence for laplace transform, Inverse laplace transform, Properties oflaplace transform, Analysis and characterization of LTI systems using laplace transform, System function algebra and block diagram representations, Unilateral laplace transform.

# **Text Books:**

1. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Prentice Hall India, 2nd Edition, 2009

# **Reference Books:**

- 1. Simon Haykins "Signal & Systems", Wiley Eastern
- 2. Tarun Kumar Rawat, Signals and Systems, Oxford University Press.

ECE - 203N	Electronic Devices							
Lecture	Tutorial	TutorialPracticalTheorySessionalTotalTin						
3	1 0 75 25 100 3 Hi							
Purpose	To familiarize the students with the various electronic devices such as various types of diodes, BJT's, FET's and regulated power supplies.							
		Cour	se Outcome	s				
CO1		-				n semiconductors ode and schottky		
CO2		To understand the detailed concept of BJT's and calculation of parameters of transistors using different models.						
CO3	Describe th	e characteristics	s & paramet	ters of FET's	s and MOS	SFET's.		
CO4		To understand the concept of different types of regulated power supplies.						

**Carrier Transport Phenomena**: Carrier Drift, Carrier Diffusion, Hall Effect, Mobility and Resistivity. Generation and Recombination of carriers, Fermi energy level, its position and its variation with doping concentration.**PN Junction**: Basic Structure, Built in potential Barrier, Electric Field, Space charge width, Junction capacitances: Depletion & Diffusion Capacitance, Small signal model of PN Junction Diode. Tunnel Diode, Schottky Diode.

## Unit- II

**Bipolar Junction Transistor:** Basic principle of operation, Forward Active mode & other modes. Non Ideal Effects: Base Width Modulation, Current Crowding, High Injection. Ebers-Moll Model, Frequency Limitations of BJT'S, Hybrid Pi Model, Introduction to H-Parameters, Hetrojunction Bipolar Transistors.

#### Unit -III

**Field Effect Devices**: JFET concepts, Basic Operation, Internal pinch off voltage, Pinch off voltage, Ideal DC current voltage relationship, Transconductance, Channel length modulation, velocity saturation effects, Small Signal Model & Frequency Limitations.Two Terminal MOS structure, Energy band diagrams, Depletion layer thickness, Capacitance Voltage Relationship, Basic MOSFET operation, Small Signal Model.

## Unit-IV

**Regulated Power Supplies**: Voltage Regulation, Zener diode shunt voltage regulator, Transistor series and Transistor shunt voltage regulator, Controlled Transistor Voltage Regulator, Op-Amp Series voltage regulator, Complete power supply and SMPS.

# **Text Books:**

- 1. D. A. Neamen, DhrubesBiswas Semiconductor Physics and Devices (IRWIN), McGraw Hill Higher Education, 4th Edition
- 2. B.G. Streetman, Solid State Electronic Devices, Prentice Hall of India, New Delhi, 1995.

## **Reference Books:**

- 1. E S. Yang, Microelectronic Devices, McGraw Hill, Singapore, 1988.
- 2. A.S. Sedra and K.C. Smith, Microelectronic Circuits, Saunder's College Publishing, 1991.
- 3. Millman&Halkias: Integrated Electronics, TMH.
- 4. Boylestad&Nashelsky: Electronic Devices & Circuit Theory, PHI.

ECE- 205N	Network Analysis and Synthesis								
Lecture	Tutorial	TutorialPracticalTheorySessionalTotalTime							
3	1	0	75	25	100	3 Hr.			
Purpose	<ul> <li>To familiarize the students with the concepts of topology, transient analysis, network modeling, filters and methods of network analysis and synthesis for solving simple and complex circuits.</li> <li>Course Outcomes</li> </ul>								
CO1		and the concept in for solving sim	of network topo	ologies and the	network a	nalysis in the			
CO2	Describe tl	Describe the circuit element models, network analysis using Laplace transform and time domain behavior from the pole-zero plots.							
CO3	Describe th	Describe the characteristics & parameters of two port networks.							
CO4	To underst	and the concept o	of filters and syn	thesis of one po	ort network	κ.			

**Introduction:** Principles of network topology, graph matrices, Network Analysis (Time-Domain): Singularity Functions, Source-Free RC, RL, Series RLC, Parallel RLC circuits, Initial & Final Conditions, Impulse & Step Response of RC, RL, Series RLC, Parallel RLC circuits.

## Unit-II

**Network Analysis (using Laplace Transform):** Circuit Element Models, Transient Response of RC, RL, RLC Circuits to various excitation signals such as step, ramp, impulse and sinusoidal excitations using Laplace transform.

**Network Functions:** Terminal pairs or Ports, Network functions for one-port and two-port networks, poles and zeros of Network functions, Restrictions on pole and zero Locations for driving point functions and transfer functions.

## Unit-III

**Characteristics and Parameters of Two Port Networks:** Relationship of two-port variables, shortcircuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationships between parameter sets, Inter-connection of two port networks.

# Unit-IV

**Types of Filters and their Characteristics:** Filter fundamentals, constant-k and m-derived low-pass and high-pass filters.

**Network Synthesis:** Causality & Stability, Hurwitz Polynomials, Positive real functions, Synthesis of one port networks with two kind of elements.

## **Text Books:**

- 1. Fundamentals of Electric Circuits: Charles K. Alexander, Matthew N. O. Sadiku, McGraw Hill Education
- 2. Network Analysis: M.E. Van Valkenburg, PHI

## **Reference Books:**

- 1. Circuits & Networks: Sukhija & Nagsarkar, Oxford Higher Education.
- 2. Network Analysis & Synthesis: F. F. Kuo, John Wiley.
- 3. Basic Circuit Theory: Dasoer Kuh, McGraw Hill Education.
- 4. Circuit Analysis: G.K. Mithal; Khanna Publication

ECE- 207N	Digital Electronics								
Lecture	Tutorial	Tutorial Practical Theory Sessional Total Time							
3	1 0 75 25 100 3 Hr.								
Purpose	To familiarize the students with the concepts of Digital Electronics covering the contents of digital techniques, logic gates & logic families etc.								
		(	Course Outcome	S					
CO1	Students w	ill be able to desig	gn a minimum c	ircuit for any fu	unction				
CO2	Students w component	ill be able to an s	alyze various lo	gic families ava	ailable to c	lesign digital			
CO3		Students will be able to design state machine circuits using sequential and combinational circuits							
CO4	Students w	ill be able to und	erstand the basi	cs of various PI	LD's.				

**Introduction to Digital Techniques:** Digital Systems; Logic circuits, Analysis, design and implementation of digital systems, Number Systems and Codes- Positional number system; Binary, octal and hexadecimal number systems; Methods of base conversions; Binary, octal and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers; Binary codes: BCD codes, Excess-3, Gray codes; Error detection and correction codes - parity check codes and Hamming code.

**Combinatonial Design using Gates:** Combinatonial Logic Systems: Definition and specification; Truth table; Basic logic operation and logic gates. Basic postulates and fundamental theorems of Boolean algebra;Standard representation of logic functions : SOP and POS forms; Simplification of switching functions using K-map and Quine-McCluskey tabular methods; Synthesis of combinational logic circuits using AOI, NAND,NOR and other combination of other logic functions.

## Unit-II

**Logic families:** Introduction to different logic families; Operational characteristics of BJT in saturation and cut-off regions; Operational characteristics of MOSFET as switch; TTL inverter - circuit description and operation; CMOS inverter - circuit description and operation; Structure and operations of TTL ,CMOS and ECL gates; Electrical characteristics of logic gates – logic levels and noise margins, fan-out, propagation delay, transition time, power consumption and power-delay product; interfacing of TTL and CMOS families.

**Combinational design using MST devices:** Encoders, Decoders, multiplexers, demultiplexers and their use as logic elements; Parity circuits and comparators; Arithmetic modules- adders, subtractors, BCD arithmetic circuits.

## Unit-III

**Sequential circuits:** Definition of state machines, state machine as a sequential controller; Basic sequential circuits- latches and flip-flops: SR-latch, D-latch, D flip-flop, JK flip-flop, T flip-flop; Timing hazards and races; Analysis of state machines using D flip-flops and JK flip-flops; Design of state machines - state table, state assignment, transition/excitation table, excitation maps and equations, logic realization;

**State machine design**: Designing state machine using ASM charts, Designing state machine using state diagram, Design of registers, counters-asynchronous and synchronous, up/down counter, Ring and Johnson counters.

**Memory** – Organization, Functional Diagram, Memory operations, Classification of semiconductor memories, Read and Write Memories, ROM, Programmable Logic Devices-PLAs, PALs and their applications, Generic Array logic devices, Sequential PLDs and their applications; Introduction to field programmable gate arrays (FPGAs) and ASICS.

## **Text Books:**

1. G.K.Kharate: Digital Electronics, 1st edition, Oxford university press, 2010

# **Reference Books:**

- 1. M.M.Mano and M.D.Ciletti: Digital design4th edition, Printece Hall.2006
- 2. R.P.Jain: Modern Digital Electronics, 3rd edition, TMH.2003
- 3. A.A.Kumar: Fundamentals of digital circuits,2nd edition, Printece Hall of India
- 4. A.P.Malvino and D.P.Leach: Digital principles and applications,6th edition,TMH,2008
- 5. Z. Kohavi, Switching and Finite Automata Theory, McGraw Hill, 1970.

ECE- 209N	Analog Communications								
Lecture	Tutorial	FutorialPracticalTheorySessionalTotalTime							
3	1	0	75	25	100	3 Hr.			
Purpose	To familiarize the students with the concepts of basic communication systems and various noises in that system, different analog modulation techniques and also AM&FM transmission & reception with various pulse techniques.								
CO1		and the concept lulation techniqu			rious types	of noise and			
CO2	To underst	and the concept of	of AM transmiss	ion & reception	<b>.</b>				
CO3	To underst	To understand the concept of FM transmission & reception.							
CO4	To underst techniques	and the concept	t of SSB transn	nission & recej	ption and	analog pulse			

**Communication Systems and Noise:** Constituents of communication system, Modulation, Bandwidth requirement, Noise, Classification of noise, Resistor noise, Multiple resistor noise sources, Network with reactive elements, Noise Temperature, Noise bandwidth, Noise figure, its calculation and measurement, Bandpass noise representation, Noise calculation in Communication Systems, Noise in Amplitude Modulated System, Noise in angle modulated systems, SNR calculation for AM and FM.

**Analog Modulation Techniques**: Theory of amplitude modulation, AM power calculations, AM modulation with a complex wave, Concepts of angle modulation, Theory of frequency modulation, Mathematical analysis of FM, Spectra of FM signals, Narrow band FM, Wide band FM, Phase modulation, Phase modulation obtained from frequency modulation, Comparison of AM, FM & PM.

## Unit-II

**AM Transmission:** Generation of Amplitude Modulation, Low level and high level modulation, Basic principle of AM generation, Square law modulation, Amplitude modulation in amplifier circuits, Vander bijl modulation, Suppressed carrier AM generation (Balanced Modulator) ring Modulator, Product Modulator/balanced Modulator.

**AM Reception:** Tuned Ratio Frequency (TRF) Receiver, Super heterodyne Receiver, RF Amplifier, Image Frequency Rejection, Cascade RF Amplifier, Frequency Conversion and Mixers, Tracking & and Alignment, IF Amplifier, AM detector, AM detector with AGC, Distortion in diode detectors, Double hetro-dyne receiver, AM receiver using a phase locked loop (PLL), AM receiver characteristics.

## Unit-III

**FM Transmission:** FM allocation standards, Generation of FM by direct method, Varactor diode Modulator, Indirect generation of FM, The Armstrong method RC phase shift method, Frequency stabilized reactance FM transmitter, FM stereo transmitter, Noise triangle.

**FM Reception:** Direct methods of Frequency demodulation, Travis detector/frequency discrimination (Balanced stop detector), Foster seelay of phase discriminator, Ratio detector, Indirect method of FM demodulation, FM detector using PLL, Pre-emphasis / de-emphasis, Limiters, The FM receiver, RF

Amplifier, FM stereo receiver, Square, Triangular, Sinusoidal FM generation Voltage controlled oscillator.

## Unit-IV

**SSB Transmission:** Introduction, Advantages of SSB Transmission, Generation of SSB, The Filter method The Phase Shift Method, The Third Method, AM Compatible SSB Modulation, Pilot Carrier SSB, Independent Side-band Systems (ISB), Vestigial Side-band Modulation (VSB), VSB-SC, Application of AM and FM in TV transmission.

**SSB Reception:** SSB Product Demodulator, Balanced Modulator as SSB Demodulator, Pilot Carrier SSB Receiver, SSB Double Super-hetrodyne Receiver, Compatible SSB (CSSB) Receiver, ISB/Suppressed Carrier Receiver, Modern Communication Receiver.

**Analog Pulse Modulation:** Introduction, Pulse amplitude modulation (PAM), Natural PAM Frequency Spectra for PAM, PAM Time Multiplexing Flat-top PAM, PAM Modulator Circuit, Demodulation of PAM Signals, Pulse Time Modulation (PTM), Pulse Width Modulation (PWM), Pulse Position Modulation (PPM), PPM Demodulator,

# **Text Books:**

1. Proakis, J. G. and Salehi, M., Fundamentals of Communication Systems, Dorling Kindersley (2008) 2nd ed.

2. Mithal G K, Radio Engineering, Khanna Pub.

**Reference Books:** 

1. Taub, H., Principles of Communication Systems, McGraw-Hill (2008) 3rd ed.

2. Haykin, S., Communication Systems, John Willey (2009) 4th ed

3. Kennedy, G., Electronic Communication Systems, McGraw-Hill (2008) 4th ed.

ECE-	Signals and Systems Lab							
211N								
Lecture	Tutorial	Practical	Practical	Sessional	Total	Time		
0	0	3	60	40	100	3 Hr.		
	Course Outcomes							
CO1	To understa	and the basic con	cepts of MATLA	B				
CO2	To explore	properties of var	ious types of sign	als and system	s.			
CO3	To visualize	e the relationship	between continu	ous and discre	te fourier 1	transforms.		
CO4	To understa	To understand the concept of sampling in time and frequency domain.						
		-		_	-			

- 1) To demonstrate some simple signal.
- 2) To explore the effect of transformation of signal parameters (amplitude-scaling, time-scaling and time-shifting).
- 3) To explore the various properties of the impulse signals.
- 4) To visualize the complex exponential signal and real sinusoids.
- 5) To identify a given system as linear or non-linear.
- 6) To explore the time variance and time invariance property of a given system.
- 7) To explore causality and non-causality property of a system.
- 8) To visualize the relationship between the continuous-time Fourier series and Fourier transform of a signal.
- 9) To visualize the relationship between the discrete-time Fourier series and Fourier transform of a signal.
- 10) To visualize the relationship between continuous-time and discrete-time Fourier transform of a signals.
- 11) To demonstrate the time domain sampling of bandlimited signals (Nyquist theorem).
- 12) To demonstrate the time domain sampling of non-bandlimited signals and antialiasing filter.
- 13) To demonstrate the signal reconstruction using zero-order hold and first-order hold filters.
- 14) To demonstrate the sampling in frequency domain (Discrete Fourier Transform).
- 15) To demonstrate the spectral analysis using Discrete Fourier Transform.
- 17) To demonstrate the convolution and correlation of two continuous-time signals.
- 18) To demonstrate the convolution and correlation of two discrete-time signals.

ECE- 213N		Digital Electronics Lab					
Lecture	Tutorial	Practical	Practical	Sessional	Total	Time	
0	0	3	60	40	100	3 Hr.	

	Course Outcomes
CO1	To understand the concept of TTL gates such as AND, OR, NAND etc.
CO2	To study and verify various combinational circuits such as multiplexers,
	Comparators etc.
CO3	To understand the concept of sequential circuits such as flip flops, counters etc.
<b>CO4</b>	To design the state machine of four states and to study a sequence detector.

- 1. Study of TTL gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.
- 2. Design and realize a given function using K-Maps and verify its performance.
- 3. To verify the operation of Multiplexer and Demultiplexer.
- 4. To verify the operation of 2 bit Comparator using gates.
- 5. To verify the truth table of S-R, J-K, T, D Flip-flops.
- 6. To verify the operation of Bi-directional shift register.
- 7. To design and verify the operation of 3-bit asynchronous counter.
- 8. To design and verify the operation of asynchronous Up/down counter using J-K FFs.
- 9. Design a state machine of 4 states.
- 10. To design a sequence detector.

ECE- 215N	Analog Communications Lab						
Lecture	Tutorial	Practical	Practical	Sessional	Total	Time	
0	0	3	60	40	100	3 Hr.	
		(	Course Outcomes		•		
CO1	To study demodulati		tion techniques	of Amplitude	modulati	on and also	
CO2	To study th	e generation tech	nniques of SSB an	nd DSBSC mod	lulation		
CO3	To underst using PLL.	-	of PLL, its cap	oture range an	d frequen	cy multiplier	

- 1. i) To study Double Sideband Amplitude Modulation and determine its modulation factor and power in sidebands.
  - ii) To study amplitude demodulation by linear diode detector.
- 2. i) To study Frequency Modulation and determine its modulation factor.ii) To study PLL 565 as frequency demodulator
- 3. To study Sampling and reconstruction of pulse amplitude modulation system.
- 4. To study the Sensitivity characteristics of superhetrodyne receiver.
- 5. To study the Selectivity characteristics of superhetrodyne receiver.
- 6. To study the Fidelity characteristics of superhetrodyne receiver.
- 7. i) To study Pulse Amplitude Modulation
  - a) Using switching method
  - b) By sample and hold circuit.
- ii) To demodulate the obtained PAM signal by IInd order Low pass filter.
- 8. To study Pulse Width Modulation / Demodulation.
- 9. To study Pulse Position Modulation / Demodulation.
- 10. To study active filters (Low-pass, High-pass, Band-pass, Notch filter).

MPC- 201N	Environmental Studies (B.Tech. All Branches Semester –III/IV)							
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time		
3	0	0	75	25	100	3 Hrs.		
Purpose	To learn the	multidisciplinary na	ture, scope and	importance of I	Environmen	tal Studies		
		Со	urse Outcomes					
CO1	Basic concept	s of Various kinds of N	Aicroscopy and Co	entrifugation Tec	hniques			
CO2	To learn the t	heoretical and practic	cal aspects of Elect	trophoresis and (	Chromatogra	phy Techniques		
CO3	To learn the c	concepts of different ki	nds of Spectrosco	py and Colourim	etry			
CO4	To understan	d the concept of radio	isotope techniques	and their applic	ations in rese	earch		

#### UNIT 1

The multidisciplinary nature of environmental studies.Definition, Scope and Importance. Need for public awareness. Natural Resources: Renewable and Non-Renewable Resources: Natural resources and associated problems.

- (a) Forest Resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
- (b) Water Resources- Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- (c) Mineral Resources- Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- (d) Food Resources- World Food Problems, changes caused by agriculture and overgazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- (e) Energy Resources- Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- (f) Land Resources- Land as a resource, land, degradation, man induced landslides, soil erosion and desertification.

Role of an individual in conservation of natural resources.Equitable use of resources for sustainable lifestyle.

## **UNIT II**

Ecosystem-Concept of an ecosystem.Sturcture and function of an ecosystem.Producers, consumers and decomposers.Energy flow in the ecosystem.Ecological Succession.Food Chains, food webs and ecological pyramids. Introduction, types,characteristic features, structure and function of the following ecosystem-

- a. Forest Ecosystem
- b. Grassland Ecosystem
- c. Desert Ecosystem
- d. Aquatic Ecosystems(ponds, streams, lakes, rivers, oceans, esturaries

Work. Visit local Field to а area to document Environment assetsriver/forest/grassland/hill/mountain.Visit local polluted site-Urban /Rural to а

Industrial/Agricultural.Study of common plants, insects and birds. Study of simple ecosystems-pond, river, hill, slopes etc. (Field work equal to 5 lecture hours).

## UNIT III

Biodiversity and its conservation. Introduction, Definition: genetic, species and ecosystem diversity. Biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversityof global, National and local levels. India as a mega-diversity nation Hot spots of Biodiversity. Threats to biodiversity: Habitat loss, poaching of wild life, man-wildlife conflicts. Endangered and endemic species of India.Conservation of Biodiversity- In situ and Ex-Situ conservation of biodiversity.

Environmental Pollution Definitiom. Cause, effects and control measures of- (a) Air Pollution (b) Water Pollution (c) Soil Pollution (d) Marine Pollution (e) Noise Pollution (f) Thermal Pollution (g) Nuclear Hazards

Solid waste management- cause, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution.Pollution case studies. Disaster management: floods, earthquake, cyclone and landslides

## UNIT IV

Social Issues and the Environment.From unsustainable to sustainable development. Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Resettlement and rehabilitation of people: Its problems and concerns. Case Studies.Environmental ethics-issues and possible solutions. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.Wasteland Reclamation.Consumerism and waste products.Environment Protection Act.Air (Prevention and Control of Pollution) Act.Water (Prevention and Control of Pollution) Act.Wildlife Protection Act.Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public Awareness. Human population and the Environment.Population growth, variation among nations. Population explosion-Family Welfare Programme. Environmentsnd human health.Human rights.Value Education.HIV/AIDS, Women and Child Welfare.Role of Information Technology in Environment and Human Health.Case Studies.

#### **Text Books**

- 1. Environmental Studies- Deswal and Deswal. Dhanpat Rai & Co.
- 2. Environmental Science & Engineering Anandan, P. and Kumaravelan, R. 2009. Scitech Publications (India) Pvt. Ltd., India
- 3. Environmental Studies. Daniels Ranjit R. J. and Krishnaswamy. 2013. Wiley India.
- 4. Environmental Science- Botkin and Keller. 2012. Wiley, India

AS-206N		NU	MERICALAN	ALYSIS		
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time
4	0	0	75	25	100	3 hrs
Purpose	-	he students with the com		• 1	1	
	different kin	ds of problems occur in s	-	-	gy whose exac	ct solution is
			difficult to fir	ıd.		
		Cours	se Outcomes			
CO1		on student will learn th				
		l) equations, and eigen v		f a matrix that ca	an be obtained	l numerically
		cal methods fail to give s				
CO2		learn to solve a large s	ystem of linear	equations and n	natrix inversio	n by various
		thods and techniques.				
CO3		n interpolation will be u				
	0	nounts of experimental				
		n and integration find ap	-		•	
		or the huge amounts of d	ata are given su	ch as series of n	neasurements,	observations
		empirical information.				
CO4		hysical laws are couched				
		ost of the engineering p				
		erential equations or par		*		
	solution of or	dinary differential equation	ons will be usefu	ıl in attempting r	nany engineer	ing problem.

# UNIT - I

**Solution of Algebraic and Transcendental Equation and Eigen Value Problem:** Solution of algebraic and transcendental equation by the method of bisection, the method of false position, Newton-Raphson method and Graeffe's Root squaring method. Eigen value problem by power method and Jacobi method.

## UNIT-II

**Solution of System of Equations and Matrix Inversion: Solution of linear algebraic equation:** Gauss elimination and Gauss-Jordan methods- Method of Triangularization and Crout's reduction. Iterative methods: Gauss-Jacobi, Gauss-Seidel and Relaxation methods. Matrix inversion by Gauss -Jordan elimination, Crout's, Doolittle and Choleski Methods.

## UNIT-III

**Interpolation:** Finite Differences, Relation between operators - Interpolation by Newton's forward and backward difference formulae for equal intervals. Newton's divided difference method and Lagrange's method for unequal intervals. Gauss Central difference formulae, Bessel and Stirling formulae.

**Numerical differentiation**: Newton's forward difference formula to compute derivatives, Newton's backward difference formula to compute derivatives, Derivatives using Central difference formulae, to find the maxima and minima of a tabulated function.

**Numerical Integration:** by Newton's Cotes formulae, Trapezoidal and Simpson's 1/3rd and 3/8th rules, Romberg method.

# UNIT-IV

**Solution of Ordinary Differential Equation:** Single step methods: Taylor series method, Picard's method of successive approximation, Euler, Modified Euler's and Improved Euler methods, Runge Kutta method of fourth order only. Multistep methods: Milne and Adams– Bashforth methods.

**Curve fitting:** Introduction, Principle of Least squares, Method of Least squares, Fitting of a straight line, parabola and exponential functions.

## **References Books:**

• M. K. Jain, SRK Iyengar and R.K. Jain, Numerical Methods For Scientific & Engg 6e, New Age International (P) Ltd (2008), ISBN-13:978-8122420012.

- Kendall E. Atkinson, An Introduction to Numerical Analysis, Wiley; 2 edition, (January 17, 1989), ISBN-10: 0471624896, ISBN-13: 978-0471624899.
- S. C. Chapra and Raymond P Canale, Numerical Methods for Engineers, Tata McGraw Hill, Indian Edition.
- James Scarborough, Numerical Mathematical Analysis, Oxford & IBH Publishing Co. Pvt. Ltd (1950), ISBN 10: 0009780021, ISBN-13:978-0009780021.
- C.F. Gerald and O.P. Wheatley, Applied Numerical Analysis, Addison Wesley; 7 edition (2003), ISBN-13:978-0321133045.

## **Additional Readings:**

- S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India Pvt. Ltd. (2007), ISBN-13: 978-8120327610.
- Babu Ram, Numerical Methods, Pearson, ISBN 978-8-317-3221-2.
- P.Thangaraj, Computer Oriented Numerical Methods, PHI, ISBN 978-81-203-3539-4.

**Note:** The Examiners will set nine questions: first question will be short answer type (covering the entire syllabus) and another eight questions will be set taking two questions from each unit. Students will have to attempt five questions in all; first question will be compulsory and other four questions, selecting one from each unit. All questions will carry equal marks.

ECE-	Data Structures & Algorithms								
202N					1				
Lecture	Tutorial	Tutorial Practical Theory Sessional Total Ti							
3	1	0	75	25	100	3 Hr.			
Purpose	To familiariz	e the student	s with the cor	cepts of C basics	, and basi	ic algorithms			
	using data st	ructures such	as searching a	nd sorting, opera	tions of lin	ked lists and			
	basics of tree	basics of trees and graphs.							
			<b>Course Outcon</b>	nes					
CO1	Students will	be able to rec	call 'C' basics a	nd design basic a	lgorithms u	using various			
	data structur	es							
CO2	Students wi	ll be able t	o design imp	lement various :	searching	and sorting			
	algorithms of	n arrays.							
CO3	Students will	be able to use	e pointers to pe	rform various ope	rations of	linked lists			
I									
<b>CO4</b>	Students will	be able to un	derstand the ba	sics of trees and (	Graphs.				
L									

**Overview of 'C':** History, Characters used in 'C", Data Types, 'C' Tokens, Structures of 'C' program, Operators and Expressions, Flow of Control, I/O functions, Arrays, Structures, user defined data types **Introduction:** Overview, Concept of Data Structures, Design of suitable Algorithm, Algorithm analysis

## Unit-II

**Arrays - Searching and Sorting:** Introduction, 1-D arrays - addressing an element in an array, array traversal, insertion and deletion, Multi-D arrays, representation of arrays in physical memory, application of arrays, Searching algorithms: linear search, binary search. Sorting algorithms: selection sort, insertions sort, bubble sort, shell sort, merge sort, radix sort (Algorithm and Analysis).

**Stacks and Queues:** Stacks operations, Applications of Stacks – Arithmetic operations using Infix to prefix and postfix notations, their conversion and evaluation, Queues operations, Circular, Priority queue and Deque.

## Unit-III

**Pointers:** Introduction, Pointer variables, pointers and arrays, array of pointer, pointers and structures, Dynamic allocation

**Linked Lists:** Introduction, linked lists, operations on linked lists (Creation, Traversing, Searching, Insertion and Deletion), Circular and doubly linked list, Linked Stacks and Linked Queues, Comparison of sequential and linked storage.

# Unit- IV

**Trees:** Binary Trees, representation of trees (Linear and linked), Traversal of binary trees. Types of binary trees: Expression tree, Binary search tree, Heap tree, threaded binary trees.

**Graphs:** Introduction, Graph terminology, various representations of Graphs, operations: Insertion, Deletion and traversal.

## **Text Books:**

- 1. Data Structures using C by A. K. Sharma, Pearson Publication
- 2. Theory & Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline by TMH.

## **Reference Books:**

- 1. Data Structures using C by A. M. Tenenbaum, Langsam, Moshe J. Augentem, PHI Pub
- 2. Data Structures and program design in C by Robert Kruse, PHI Expert Data Structures with C by R.B. Patel

ECE-	Electronics Measurements and Instruments							
204N Lecture	Tutorial	Practical	Theory	Sessional	Total	Time		
3	1	0	75	25	100	3 Hr.		
Purpose		To familiarize the students with the concepts of Electronics Measurements like measurement of voltage, current & resistance etc.						
	·	(	Course Outcome	S				
CO1	Students w bridges	ill learn the tec	hniques of mea	surement of re	sistance us	ing different		
CO2	AC Bridge students	s & Voltage Indi	cating & Recor	ding Devices w	ill be intro	duced to the		
CO3	Students w Instrument	ill be able to re	cognize the fun	ctioning of diff	erent Anal	og & Digital		
CO4	Transduce	rs & Data Acquis	ition Systems wi	ill be introduced	d to the stu	dents		

**Measurement and Error:** Functional elements and generalized configuration of a measuring Instrument, Characteristics of instruments, errors in measurements and their statistical analysis.

**Measurement of Resistance:** Wheat stone bridge, Carey-Foster Bridge, Kelvin double bridge, Measurement of Insulation resistance.

#### Unit-II

**A-C Bridges:** Maxwell Inductance bridge. Maxwell Inductance Capacitance Bridge, Anderson's Bridge, Hay's Bridge, De-Sauty's Bridge, Schering's bridge and Wein's bridge.

**Voltage Indicating and Recording Devices:** Analog voltmeters and Potentiometers, Self balancing potentiometer and X-Y recorders, Galvanometers - Oscillographs, Cathode - Ray Oscilloscopes, Magnetic Tape Recorders.

## Unit-III

**Electronic Instruments:** Wave analyzer, Distortion meter: Q-meter. Measurement of Op-Amp parameters.

**Digital Instruments:** Digital Indicating Instruments, Comparison with analog type, digital display methods, digital methods of time and frequency measurements, digital voltmeters.

## Unit-IV

**Transducers:** Classification of Transducers, Strain Gauge, Displacement Transducers - Capacitive Transducers, LVDT, Piezo-electric Transducers, Temperature Transducers – resistance thermometer, Thermocouples and Thermistors, Liquid level measurement Low pressure (vacuum) measurement.

**Data Acquisition Systems:** A to D and D to A converters, Analog and Digital Data Acquisition Systems, Multiplexing, Spatial Encoders, Telemetry.

#### **Text Book:**

1. A Course in Electrical and Electronics Measurements and Instrumentation: A.K. Sawhney; Dhanpat Rai & Sons.

#### **Reference Books:**

- 1. Electronics Instrumentation and Measurement Techniques: Cooper W.D & Helfrick A.D.; PHI
- 2. Doeblin E.O., Measurement Systems: Application & Design, Mc Graw Hill.

ECE- 206N	Electromagnetic Theory								
Lecture	Tutorial	Tutorial Practical Theory Sessional Total Time							
3	1	0	75	25	100	3 Hr.			
Purpose		To familiarize the students with the concepts of Electric & Magnetic Fields and make them understand the phenomenon of propagation of electromagnetic waves.							
	T		ourse Outcomes						
CO1	Basics of ele	ectrostatics includ	ing dielectric p	roperties will b	e covered.				
CO2	Basics of ma	agneto-statics and	Maxwell's equ	ations will be c	overed.				
CO3	Fundamentals of Uniform plane waves and their propagation in different mediums will be covered.								
CO4		als of Transmissio will be covered.	on Lines and di	ifferent modes	of wave pr	opagation in			

**Electric Field and Current:** Introduction to Vectors:Addition, Subtraction, Multiplication & Differentiation. Coordinate Systems: Rectangular, Cylinderical & Spherical. Coulomb's law. Electric Field Intensity, Electric Potential, Field of a Line Charge, Field of a Sheet of Charge, Electric Flux Density, Electric Dipole, Current Density, Continuity of Current, Gauss's Law and Applications, Electric Field Behaviour in Dielectrics, Boundary Conditions at Interface between Two Dielectrics, Method of Images, Capacitance of Two Wire Line, Poisson's and Laplace's Equations, Uniqueness Theorem.

#### Unit-II

**Magnetic Field and Maxwell Equations:** Biot - Savart Law. Ampere's law, Magnetic Vector potentials, Force on a moving charge, Differential Current Element, Force and Torque on a Closed Circuit, Magnetic Boundary Conditions, the Magnetic Circuit, Faraday's Law, Maxwell's Equations in Point and Integral form for Free space, Good Conductors & Lossy Dielectric for Sinusoidal Time Variations& Static Fields, Retarded potentials.

## Unit-III

**The Uniform Plane Wave:** Plane Waves & its Properties, Wave Equation for Free Space and Conducting Medium, Propagation of Plane Waves in Lossy Dielectrics, Good Dieletrics& Good Conductors. The Poynting Vector and Power considerations, Skin Effect, Reflection of Uniform Plane Waves (Normal & Oblique Incidence).

#### Unit-IV

**Transmission Lines and Waveguides:** The Transmission Line Equations, Graphical Methods, Smith chart, Time-domain and Frequency- domain Analysis, Reflection in Transmission Lines, SWR. TE, TM, TEM waves, TE and TM modes in Rectangular and Circular Waveguides, Cut-off & Guided Wavelength, Wave Impedance and Characteristic Impedance, Dominant Modes, Power Flow in waveguides, Excitation of Waveguides, Dielectric Waveguides.

## **Text Books:**

1. Hayt W H., Engineering Electromagnetics, Tata McGraw Hill, 6th Edition.

#### **References Books:**

1 Jordan E C & Balmain K G, Electromagnetic Waves and Radiating Systems, PHI.2 David K. Chang, Field and Waves Electromagnetics, Addison Wesley.

ECE-	Analog Electronics								
208N									
Lecture	Tutorial	IntervalPracticalTheorySessionalTotalTime							
3	1	0	75	25	100	3 Hr.			
Purpose	To familiarize	the students w	ith the concepts	of various	models of	BJT's and			
	FET's, multist	age amplifiers,	concept of feedl	back and its	topologies,	oscillators			
	and detail of o	and detail of operational amplifiers with its applications.							
		Cou	rse Outcomes						
CO1	To understand	the concept of v	various amplifie	rs using BJT	and FET a	and various			
	transistor mod	els							
CO2	Describe the fi	requency response	se of multistage a	amplifiers a	nd the detai	led concept			
	of feedback top	pologies.							
CO3	To understand	the concept of	Barkhausen crit	teria of oscil	lation and v	various RC			
	and LC oscillators and their frequency of oscillation.								
CO4	To understand	the concept of	<b>Operational</b> am	plifier and i	ts various a	pplications			
	such as curren	t mirror, Schmit	t trigger and var	ious op-amp	parameters	5.			

**Amplifier Models**: Voltage amplifier, current amplifier, trans-conductance amplifier and transresistance amplifier. Biasing schemes for BJT and FET amplifiers, bias stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features, small signal analysis, low frequency transistor models, estimation of voltage gain, input resistance, output resistance etc., design procedure for particular specifications, low frequency analysis of multistage amplifiers.

## Unit -II

**Transistor Frequency Response:** High frequency transistor models, frequency response of single stage and multistage amplifiers, cascode amplifier. Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues.

**Feedback Topologies:** Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.

## Unit -III

**Oscillators:** Review of the basic concept, Barkhausen criterion for oscillators,type of RC oscillators : RC phase shift oscillator , Wien bridge oscillator , LC oscillators : Hartley oscillator, Collpit oscillator , Clapp oscillator ,555 Timer as a monostable and astable multivibrator.

## Unit -IV

**Op-Amp Applications**: Schmitt trigger and its applications. Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: design of differential amplifier for a given specification, design of gain stages and output stages.

## **Text Books:**

1. Electronic Devices and Circuits by Millman and Halkias, McGraw Hills, New Delhi

## **Reference Books:**

- 1. Operational Amplifiers and Linear Integrated Circuits by Ramakant A Gayakwad, PHI.
- 2. A.S. Sedra & K.C.Smith, Microelectronics Circuits, Oxford University Press
- 3. Robert L. Boylestad & Louis Nashelsky, Electronic Devices & Circuit Theory, Pearson

ECE- 210N		Computer Architecture & Organization						
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time		
3	1	0	75	25	100	3 Hr.		
Purpose		ze the students z software, Cor		-		-		
		Co	urse Outcon	nes				
CO1	To understa	nd the concept o	of basics of	computer har	dware & so	ftware		
CO2	To understa	nd the concept of	of control de	esign & proces	sor design			
CO3	To familiariz	To familiarize with the concept of various memory systems.						
CO4	To familiariz	ze with the conc	ept of syster	n organisation	1.			

**Basic Structure of Computer Hardware and Software**: Introduction to basic computer architecture, register transfer, bus and memory transfers, arithmetic, logic and shift micro operations.

**Central Processing Unit:** Introduction, general register organization, stack organization, instruction formats, addressing modes, data transfer and manipulation, program control, RISC, Macros and Subroutines.

#### Unit-II

**Control Design:** Micro programmed control, control memory, address sequencing, micro program example, design of control unit, Hardwired Control: design methods, Multiplier Control Unit, CPU Control unit.

**Processor Design:** Decimal arithmetic unit – BCD adder, BCD subtraction, decimal arithmetic operations, ALU design, Forms of Parallel processing classification of Parallel structures, Array Processors, Structure of general purpose Multiprocessors.

## Unit-III

#### Memory Organization:

Memory hierarchy, main memory, auxillary memory, associative memory,cache memory, virtual memory, memory management, hardware multiprocessor architectures and their characteristics, interconnection structures, Random access memories: semiconductor RAMS, Serial – access Memories – Memory organization, Main Memory Allocation.

#### Unit-IV

#### **System Organization:**

Pipeline and Vector Processing: Parallel processing, pipelining, arithmetic pipeline, instruction pipeline, RISC pipeline, vector processing, array processors, Input-output Organisation: Peripheral devices, input-output interface, asynchronous data transfer, modes of transfer, priority interrupt,DMA, IOP serial communication.

#### **Text Books:**

1. Morris Mano, "Computer System Architecture", PHI.

2. J.F. Heys, "Computer Organization and Architecture", TMH.

## **Reference Books:**

1. J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach, 3rd Ed, Morgan Kaufmann, 2002.

ECE- 212N		Data Structures Lab				
Lecture	Tutorial	TutorialPracticalPracticalSessionalTotalTime				
0	0	3	60	40	100	3 Hr.

	Course Outcomes					
CO1	Students will be able to recall 'C' basics and design basic algorithms using various data structures					
CO2	Students will be able to design implement various searching and sorting algorithms on arrays.					
CO3	Students will be able to use pointers to perform various operations of linked lists					
CO4	Students will be able to understand the basics of trees and Graphs.					

- 1. Write a program to print a 2D array.
- 2. Write a program to find the factorial of an nth number using recursion.
- 3. Write a program to print Fibonacci sequence.
- 4. Using clock() function of time.h header file, compare the timings of linear search and binary search for an 1D array of 1000 elements
- 5. Compare the timings of the following sorting algorithm
  - a. Bubble sort
  - b. Selection sort
  - c. Insertion sort
- 6. Implement stacks using arrays for the following user defined functions
  - a. Size of stack
  - b. Number of elements in the stack
  - c. Pop with underflow check
  - d. Push with overflow check
- 7. Implement queues using arrays for the following user defined functions
  - a. Size of queue
  - b. Number of elements in the queue
  - c. Insert an element with overflow check
  - d. Delete an element with underflow check
- 8. Implement linked list for the following user defined functions
  - a. Create a node and Insert an element
  - b. Delete an element and its node
  - c. Find the location of a given value
  - d. Print the list in forward or reverse order
- 9. Traverse a tree and print the elements in
  - a. Preorder
  - b. Post order
  - c. In order
- 10. Traverse a graph and print the elements using
  - a. Depth first search
  - b. Breadth first search

ECE- 214N	Electronics Measurements and Instruments Lab						
Lecture	Tutorial	Practical	Practical	Sessional	Total	Time	
0	0	3	60	40	100	3 Hr.	
		C	ourse Outcomes		•		
CO1	To measure	the unknown ind	luctance and cap	pacitance using	various A	C bridges.	
CO2	To measure	the unknown fre	equency using dif	fferent frequen	cy bridges		
CO3		To understand the concept of caliberation of energy meter and B-H curve of different magnetic materials.					
CO4	To underst potentiomet	tand the conce	pt conversion	of voltmeter	into am	meter using	

- 1. To measure the unknown Inductance in terms of capacitance and resistance by using Maxwell's Inductance bridge.
- 2. To measure unknown Inductance using Hay's bridge.
- 3. To measure unknown capacitance of small capacitors by using Schering's bridge.
- 4. To measure 3-phase power with 2-Wattmeter method for balanced and unbalanced bridge.
- 5. To measure unknown capacitance using De-Sauty's bridge.
- 6. To measure unknown frequency using Wein's frequency bridge.
- 7. To measure unknown low resistance by Kelvin's Double bridge.
- 8. To test the soil resistance using Meggar (Ohm meter).
- 9. To calibrate Energy meter using standard Energy meter.
- 10. To plot the B-H curve of different magnetic materials.
- 11. To calibrate the Voltmeter using Crompton Potentiometer.
- 12. To convert the Voltmeter into Ammeter using Potentiometer.
- 13. Insulation testing of cables using Digital Insulation Tester.

ECE- 216N	Analog Electronics Lab								
Lecture	Tutorial	Tutorial         Practical         Practical         Sessional         Total         Time							
0	0	3	60	40	100	3 Hr.			
		C	ourse Outcomes		•				
CO1	0	and calculate t on of transistor a	0 /	uency respon	se etc of	the various			
CO2		Describe the frequency response of and test the performance of various LC and RC oscillators.							
CO3		and and design able multivibrate		lications of 55	5 timer su	ch as astable			

1. To Design a simple common emitter (CE) amplifier Circuit using BJT and find its gain and frequency response.

2. To Design a differential amplifier using BJT and calculate its gain and frequency response

3. To design RC coupled Single stage BJT amplifier and determination of the gain ,frequency response, input and output impedances.

4. To design a BJT Emitter follower and determination of the gain, input and output impedances .

5. To design and test the performance of BJT-RC Phase shift Oscillator for  $f0 \le 10$  KHz.

6. To design and test the performance of BJT – Hartley Oscillators for RF range  $f0 \ge 100$ KHz.

7. To design and test the performance of BJT – Colpitt Oscillators for RF range  $f0 \ge 100$ KHz.

8. To design an astable multivibrator using 555 timer.

9. To design a monostable multivibrator using 555 timer.

10. To design Schmitt trigger using op-amp and verify its operational characteristics.

MPC- 202N	Energy Studies (B.Tech All Branches Semester III/IV)					
Lecture	Tutorial	Practical	Theory	Sessional	Total	Time
3	-	-	75	25	100	3
Purpose To make the students conversant with the basics concepts and conversion of various form of Energy						
Course Outcomes						
CO1	An overview about Energy , Energy Management, Audit and tariffs					
CO2	Understand the Layout and working of Conventional Power Plants					
CO3	Understand the Layout and working of Non Conventional Power Plants					
CO4	To understand the role of Energy in Economic development and Energy Scenario in India					

## UNIT-I

**Introduction**: Types of energy, Conversion of various forms of energy, Conventional and Nonconventional sources, Need for Non-Conventional Energy based power generation. **Energy Management:** General Principles of Energy Management, Energy Management Strategy. **Energy Audit & Tariffs:** Need, Types, Methodology and Approach.

## UNIT-II

**Conventional Energy sources:** Selection of site, working of Thermal, Hydro, Nuclear and Diesel power plants and their schematic diagrams & their comparative advantages- disadvantages.

### UNIT-III

**Non Conventional Energy sources:** Basicprinciple, site selection and power plant layout of Solar energy, photovoltaic technologies, PV Systems and their components, power plant layout of Wind energy, layout of Bio energy plants ,Geothermal energy plants and tidal energy plants.

## **UNIT-IV**

**Energy Scenario**: Lay out of power system, Role of Energy in Economic development, energy demand, availability and consumption, Commercial and Non-commercial energy, Indian energy scenario, long term energy scenario, energy pricing, energy sector reforms in India, energy strategy for the future.

#### **Text Books:**

- 1. Energy Studies-Wiley and Dream tech India
- 2. Soni, Gupta, Bhatnagar: Electrical Power Systems DhanpatRai& Sons
- 3. NEDCAP: Non Conventional Energy Guide Lines
- 4. G.D. Roy :Non conventional energy sources
- 5. B H Khan : Non Conventional energy resources McGraw Hill
- 6. Meinel A B and Meinal M P,Addison : Applie
- 7. d Solar Energy- Wesley Publications
- 8. George Sutton :Direct Energy Conversion McGraw