### Kurukshetra University Kurukshetra

Syllabus for First Year of Session 2015 – 2016 and

Revised Scheme (ECE, CSE, ME)

### Galaxy Global Group of Institutions, Ambala

# Syllabus for First Year of Session 2015 – 2016

Galaxy Global Group of Institutions, Ambala

### **Bachelor of Technology (Common for All Branches)**

SCHEME OF STUDIES/EXAMINATIONS

### Semester – I

| S.  | Course No. | Course Title                           | Teaching Schedule |     |     | hedule         | Allotment of Marks |           |           |               | Duration          |
|-----|------------|----------------------------------------|-------------------|-----|-----|----------------|--------------------|-----------|-----------|---------------|-------------------|
| No. |            |                                        | L                 | Т   | P   | Hours/<br>Week | Theory             | Sessional | Practical | Total         | of Exam<br>(Hrs.) |
| 1   | AS-101N    | Applied Physics-I                      | 4                 | 1   | 0   | 5              | 75                 | 25        | 0         | 100           | 3                 |
| 2A  | AS-103N    | Applied Chemistry                      | 3                 | 1   | 0   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 2B  | ME-101N    | Manufacturing Technology and Processes | 4                 | 0   | 0   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 3   | AS-105N    | Applied Mathematics-I                  | 4                 | 1   | 0   | 5              | 75                 | 25        | 0         | 100           | 3                 |
| 4A  | HS-101N    | Technical Communication                | 3                 | 1   | 0   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 4B  | BT-101N    | Fundamentals of<br>Biotechnology       | 3                 | 1   | 0   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 5A  | ME-105N    | Engg. Drawing and Graphics             | 1                 | 0   | 3   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 5B  | ECE-101N   | Basics of Electronics Engg.            | 3                 | 1   | 0   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 6A  | EE-101N    | Electrical Technology<br>Fundamentals  | 4                 | 1   | 0   | 5              | 75                 | 25        | 0         | 100           | 3                 |
| 6B  | CSE-101N   | Introduction to Computer Programming   | 3                 | 1   | 0   | 4              | 75                 | 25        | 0         | 100           | 3                 |
| 7   | AS-107N    | Applied Physics Lab -I                 | 0                 | 0   | 2   | 2              | 0                  | 20        | 30        | 50            | 3                 |
| 8A  | AS-109N    | Applied Chemistry Lab                  | 0                 | 0   | 2   | 2              | 0                  | 20        | 30        | 50            | 3                 |
| 8B  | ME-107N    | Engg. Workshop                         | 0                 | 0   | 3   | 3              | 0                  | 20        | 30        | 50            | 3                 |
| 9A  | EE-103N    | Electrical Technology Lab              | 0                 | 0   | 2   | 2              | 0                  | 20        | 30        | 50            | 3                 |
| 9B  | CSE-103N   | Computer Programming Lab               | 0                 | 0   | 2   | 2              | 0                  | 20        | 30        | 50            | 3                 |
| 10B | ECE-103N   | Basic Electronics Lab                  | 0                 | 0   | 2   | 2              | 0                  | 20        | 30        | 50            | 3                 |
|     |            | Total                                  | 19/<br>21         | 5/5 | 9/9 | 33/35          | 450                | 210/230   | 90/120    | 750A<br>/800B |                   |

### **Bachelor of Technology (Common for All Branches)**

SCHEME OF STUDIES/EXAMINATIONS

### Semester – II

| S.  | Course No. | Course Title                            | Teaching Schedule |     |     | Allotment of Marks |        |           |           | Duration |         |
|-----|------------|-----------------------------------------|-------------------|-----|-----|--------------------|--------|-----------|-----------|----------|---------|
| No. |            |                                         | L                 | T   | P   | Hours/             | Theory | Sessional | Practical | Total    | of Exam |
|     |            |                                         |                   |     |     | Week               |        |           |           |          | (Hrs.)  |
| 1   | AS-102N    | Applied Physics-II                      | 4                 | 1   | 0   | 5                  | 75     | 25        | 0         | 100      | 3       |
| 2A  | AS-103N    | Applied Chemistry                       | 3                 | 1   | 0   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 2B  | ME-101N    | Manufacturing Technology and Processes  | 4                 | 0   | 0   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 3   | AS-104N    | Applied Mathematics-II                  | 4                 | 1   | 0   | 5                  | 75     | 25        | 0         | 100      | 3       |
| 4A  | HS-101N    | Technical Communication                 | 3                 | 1   | 0   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 4B  | BT-101N    | Fundamentals of<br>Biotechnology        | 3                 | 1   | 0   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 5A  | ME-105N    | Engg. Drawing and Graphics              | 1                 | 0   | 3   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 5B  | ECE-101N   | Basics of Electronics Engg.             | 3                 | 1   | 0   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 6A  | EE-101N    | Electrical Technology Fundamentals      | 4                 | 1   | 0   | 5                  | 75     | 25        | 0         | 100      | 3       |
| 6B  | CSE-101N   | Introduction to Computer<br>Programming | 3                 | 1   | 0   | 4                  | 75     | 25        | 0         | 100      | 3       |
| 7   | AS-106N    | Applied Physics Lab -II                 | 0                 | 0   | 2   | 2                  | 0      | 20        | 30        | 50       | 3       |
| 8A  | AS-109N    | Applied Chemistry Lab                   | 0                 | 0   | 2   | 2                  | 0      | 20        | 30        | 50       | 3       |
| 8B  | ME-107N    | Engg. Workshop                          | 0                 | 0   | 3   | 3                  | 0      | 20        | 30        | 50       | 3       |
| 9A  | EE-103N    | Electrical Technology Lab               | 0                 | 0   | 2   | 2                  | 0      | 20        | 30        | 50       | 3       |
| 9B  | CSE-103N   | Computer Programming Lab                | 0                 | 0   | 2   | 2                  | 0      | 20        | 30        | 50       | 3       |
| 10B | ECE-103N   | Basic Electronics Lab                   | 0                 | 0   | 2   | 2                  | 0      | 20        | 30        | 50       | 3       |
|     |            | Total                                   | 19/               | 5/5 | 9/9 | 33/35              | 450    | 210/230   | 90/120    | 750A     |         |
|     |            |                                         | 21                |     |     |                    |        |           |           | /800B    |         |

| Course  | <b>Course Title</b>                                              | Teaching                                                                                  |         |         | Alloti     | Allotment of Marks |          |        |  |  |  |  |  |
|---------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------|---------|------------|--------------------|----------|--------|--|--|--|--|--|
| No.     |                                                                  | Schedule                                                                                  |         |         |            |                    | of Exam  |        |  |  |  |  |  |
|         |                                                                  | L                                                                                         | L T P   |         | Theory     | Sessional          | Total    | (Hrs.) |  |  |  |  |  |
| AS-101N | Applied Physics-I                                                | 4                                                                                         | 1       | 0       | 75         | 25                 | 100      | 3      |  |  |  |  |  |
| Purpose | To introduce the bas<br>Engineering field.                       | To introduce the basics of Physics to the students for applications in Engineering field. |         |         |            |                    |          |        |  |  |  |  |  |
|         |                                                                  | Cou                                                                                       | ırse (  | Outcor  | nes (CO)   |                    |          |        |  |  |  |  |  |
| CO-1    | Introduce the fundar applications.                               | nent                                                                                      | tals of | finterf | erence and | diffraction        | and thei | •      |  |  |  |  |  |
| CO-2    | To make the student technology.                                  | To make the students aware of the importance of polarization and Laser in                 |         |         |            |                    |          |        |  |  |  |  |  |
| CO-3    | Applications of Optical Fiber and Ultrasonics in various fields. |                                                                                           |         |         |            |                    |          |        |  |  |  |  |  |
| CO-4    | Discussion of theory                                             | Discussion of theory of relativity and detection of nuclear radiations.                   |         |         |            |                    |          |        |  |  |  |  |  |

**Interference:** Principle of Superposition, Conditions for interference, Division of wavefront: Fresnel's Biprism and Applications, Division of amplitude: Wedge-shaped film, Newton's rings, Michelson Interferometer and Applications.

**Diffraction:** Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

### Unit – II

**Polarization:** Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartz polarimeter.

**Laser:** Introduction, Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping schemes, Main components of Laser, He-Ne Laser, Semiconductor Laser, Characteristics of Laser, Applications of Laser.

### Unit – III

**Optical Fiber:** Introduction, Principle of propagation of light waves in optical fibers: total internal reflection, acceptance angle, numerical aperture, V- number; Modes of propagation, Types of optical fibers: single mode fiber, multimode fibers; Fiber optics communication system, Advantages of optical fiber communication, Applications of optical fibers.

**Ultrasonics:** Ultrasonic waves, Properties of ultrasonic waves, Production of ultrasonic waves: Magnetostriction and Piezoelectric methods, Detection of ultrasonic waves, Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.

**Special theory of Relativity:** Concept of ether, Michelson-Morley experiment, Postulates of Special theory of relativity, Frame of reference, Galilean Transformations, Lorentz transformations, Consequences of Lorentz Transformations: Length contraction, Time dilation; Velocity transformations, Variation of mass with velocity, Einstein's mass-energy relation, Einstein's energy-momentum relation.

**Nuclear Radiation and Detection:** Classification of nuclear radiations, Interaction of charged particle (light and heavy) and gamma radiations with matter (basic concepts); Gasfilled detector: Ionization Chamber, Proportional Counter, Geiger Muller Counter; Scintillation Detector, Semiconductor Detector.

### **Text Books**

- 1. P.K. Diwan, Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. S.P. Taneja, Modern Physics for Engineers, R. Chand & Co.

### **Reference Books**

- 1. N. Subrahmanyam, B. Lal, M.N. Avadhanulu, *A Textbook of Optics*, S. Chand & Company Ltd.
- 2. Arthur Beiser, Concepts of Modern Physics, Tata McGraw-Hill Publishing Company Limited
- 3. R. Resnick, Introduction to Special Relativity, John Wiley & Sons. (Asia) Pte. Ltd.
- 4. V.K. Mittal, R.C. Verma, S.C. Gupta, *Introduction to Nuclear and Particle Physics*, PHI Learning Private Limited.
- 5. S.S. Kapoor, V.S. Ramamurthy, *Nuclear Radiation Detectors*, New Age International (P) Limited.

| Course  | Course Title                                                        | Teaching |        | Allotr   | rks          | Duration     |          |          |  |  |  |
|---------|---------------------------------------------------------------------|----------|--------|----------|--------------|--------------|----------|----------|--|--|--|
| No.     |                                                                     | Schedule |        |          | of Exam      |              |          |          |  |  |  |
|         |                                                                     | L        | L T P  |          | Theory       | Sessional    | Total    | (Hrs.)   |  |  |  |
| AS-103N | Applied Chemistry                                                   | 3        | 1      | 0        | 75           | 25           | 100      | 3        |  |  |  |
| Purpose | To introduce some of the concepts of applied chemistry to students. |          |        |          |              |              |          |          |  |  |  |
|         |                                                                     | Cot      | ırse ( | Outcor   | nes (CO)     |              |          |          |  |  |  |
| CO-1    | Basic concepts of the                                               | erm      | odyna  | mics a   | and phase re | ule chemisti | ry.      |          |  |  |  |
| CO-2    | General methods of                                                  | wat      | er pur | ificatio | on and intro | duction of   | green ch | emistry. |  |  |  |
| CO-3    | Importance of lubricants and drawbacks of corrosion.                |          |        |          |              |              |          |          |  |  |  |
| CO-4    | Introduction of diffe                                               | rent     | engii  | neering  | materials.   | •            |          |          |  |  |  |

**Thermodynamics**: First, second, third and zeroth law of thermodynamics, concept of entropy (for reversible and irreversible process, of ideal gases, of phase transition), free energy, work function, chemical potential, Gibb's Helmholtz equation, Clausius-Clapeyron equation and related numerical problems. Phase rule, terminology and derivation of Gibbs phase rule, phase diagrams of water system, sulphur system, (Pb-Ag) system, (Zn-Mg) system and (Na-K) system.

### Unit - II

**Water and its treatment**: Hardness of water and its determination by EDTA, alkalinity and its determination, related numerical problems, Scale and sludge formation (composition, properties and methods of prevention), Water softening by ion exchange process, desalination (reverse osmosis, electrodialysis)

**Green Chemistry**: Definition and concept, Twelve principles of green chemistry, Alternate solvents-ionic liquids, super critical fluid (SCF) system, derivatized and immobilized solvent materials.

### **Unit - III**

**Corrosion**: Dry and Wet corrosion, electrochemical theory of corrosion, Pitting, water-line, differential aeration and stress corrosion, factors affecting corrosion, preventive measures (proper design and material selection, cathodic and anodic protection).

**Lubricants**: Mechanism of thin and thick layer lubrication, classification of lubricants and important propertiers of lubricants (viscosity index, flash and fire point, saponification number, pour point, iodine number,) Greases as lubricants: consistency and drop point test

### Unit-IV

**Engineering materials**: Ceramics (brief introduction of clays, silica, feldspar, porcelain and Vitreous Enamels), cement (introduction, raw materials, manufacture of portland cement, analysis of cement) Nanoscale materials(introduction, properties of nanomaterials, brief discussion of nanocrystals and clusters, fullerenes, carbon nanotubes, dendrimers, nano wires, nanocomposites)

### **Text Book**

1. Rajesh Agnihotri, Engineering Chemistry, Wiley India Pvt. Ltd.

### **Reference Books**

- 1. J.C. Kuriacone, J. Rajaram, *Chemistry in Engineering and Technology*, McGraw Hill Education (India) Private Ltd. Volume I and II.
- 2. S.S. Dua, A Text Book of Engineering Chemistry, S.Chand and Company Ltd.
- 3. Atkin, *Physical Chemistry*, Oxford Publication.
- 4. Puri, Sharma, Pathania, Principals of Physical Chemistry, Vishal Publications.

| Course<br>No. | Course Title                                                                                                                      | Teaching<br>Schedule                                                        |        | Alloti | nent of Ma | ırks        | Duration of Exam |           |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|--------|------------|-------------|------------------|-----------|--|--|--|
|               |                                                                                                                                   | L                                                                           | T      | P      | Theory     | Sessional   | Total            | (Hrs.)    |  |  |  |
| ME-101N       | Manufacturing<br>Technology and<br>Processes                                                                                      | 4                                                                           | 0      | 0      | 75         | 25          | 100              | 3         |  |  |  |
| Purpose       | To make the students aware of different manufacturing processes like metal casting, forming, metal cutting and joining processes. |                                                                             |        |        |            |             |                  |           |  |  |  |
|               |                                                                                                                                   | Cor                                                                         | ırse ( | Outcor | nes (CO)   |             |                  |           |  |  |  |
| CO-1          | Define and classify comprehend about the                                                                                          |                                                                             |        |        | <b>U</b> 1 |             |                  | •         |  |  |  |
| CO-2          | Comprehend the primetal's. Define and                                                                                             |                                                                             |        |        | 0          | quid materi | ials such        | as molten |  |  |  |
| CO-3          | Comprehend the proshapes.                                                                                                         | Comprehend the procedure of manufacturing process of forming materials into |        |        |            |             |                  |           |  |  |  |
| CO-4          | Explain the procedure of how the materials are joined together and the processes used to achieve this.                            |                                                                             |        |        |            |             |                  |           |  |  |  |

**Introduction**: Introduction to Manufacturing Processes and their Classification. Industrial Safety; Introduction, Types of Accidents, Causes and Common Sources of Accidents, Methods of Safety, First Aid.

**Engineering Materials**: General Properties and Applications of Engineering Materials, Mild Steel, Medium Carbon Steel, High Carbon Steel, High Speed Steel and Cast Iron.

### Unit – II

**Foundry:** Introduction to Casting Processes, Basic Steps in Casting Process, Pattern, Types of Patterns, Pattern Allowances, Risers, Runners, Gates, Moulding Sand and its composition, Sand Preparation, Molding Methods, Core Sands and Core Making, Core Assembly, Mold Assembly, Melting (Cupola) and Pouring, Fettling, Casting Defects and Remedies.

### Unit – III

**Cold Working (Sheet Metal Work):** Sheet Metal Operations, Measuring, Layout Marking, Shearing, Punching, Blanking, Piercing, Forming, Bending and Joining, Advantages and Limitations.

**Hot Working Processes**: Introduction to Hot Working, Principles of Hot Working Processes, Forging, Rolling, Extrusion, Wire Drawing.

Plant Layout: Objectives of Layout, Types of Plant Layout and their Advantages.

### Unit - IV

**Introduction to Machine Tools**: Specifications and Uses of commonly used Machine Tools in a Workshop such as Lathe, Milling, Drilling, Introduction to Metal Cutting. Nomenclature

of a Single Points Cutting Tool and Tool Wear. Mechanics of Chips Formations, Type of Chips , Use of Coolants in machining.

**Welding:** Introduction to Welding, Classification of Welding Processes, Gas Welding: Oxy-Acetylene Welding, Resistance Welding; Spot and Seam Welding, Arc Welding: Metal Arc, TIG & MIG Welding, Welding Defects and Remedies, Soldering & Brazing.

### **Text Books**

- 1. Hazra & Chaudhary, Workshop Technology Vol. I &II, Asian Book Comp., New Delhi.
- 2. R.A. Lindberg, *Process and Materials of Manufacture*, Prentice Hall of India, New Delhi.

### **Reference Books**

- 1. J.S. Campbell, *Principles of Manufacturing Materials and Processes*, McGraw-Hill.
- 2. Amitabha Ghosh & Ashok Kumar Malik, Manufacturing Science, East-West Press.
- 3. Ostwald, Munoz, Manufacturing Process and Systems, John Wiley.
- 4. Chapman, WAJ, Edward Arnold, Workshop Technology, Vol. 1, 2 & 3.

| Course<br>No. | Course Title                                                                                                                                                               | Teaching Allotment of Marks Schedule |        |        |              | Duration of Exam |           |              |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|--------|--------------|------------------|-----------|--------------|--|--|--|--|
|               |                                                                                                                                                                            | L                                    | T      | P      | Theory       | Sessional        | Total     | (Hrs.)       |  |  |  |  |
| AS-105N       | Applied<br>Mathematics-I                                                                                                                                                   | 4                                    | 1      | 0      | 75           | 25               | 100       | 3            |  |  |  |  |
| Purpose       | To acquaint the students with the basic use of matrices, differential calculus and integral calculus.                                                                      |                                      |        |        |              |                  |           |              |  |  |  |  |
|               |                                                                                                                                                                            | Cot                                  | ırse ( | Outcor | nes (CO)     |                  |           |              |  |  |  |  |
| CO-1          | How to find the inmethod, using the rand application of E                                                                                                                  | ank                                  | how    | to get | the solution | n of system      | _         |              |  |  |  |  |
| CO-2          | Find higher order dusing series method                                                                                                                                     |                                      |        |        |              |                  | lues of   | the function |  |  |  |  |
| CO-3          | Extension of some of                                                                                                                                                       | once                                 | ept of | differ | ential calcu | lus for more     | e than or | ne variable  |  |  |  |  |
| CO-4          | Application of integral calculus to find the area, volume, surface, volume of solid of revolution and, easy way to solve the multiple integrals by changing the variables. |                                      |        |        |              |                  |           |              |  |  |  |  |

**Linear Algebra:** Rank of a matrix, elementary transformations, elementary matrices, Gauss Jordon method to find inverse using elementary transformations, normal form of a matrix, linear dependence and independence of vectors, consistency of linear system of equations, linear and orthogonal transformations, eigenvalues and eigenvectors, properties of eigenvalues, Cayley - Hamilton theorem and its applications, diagonalization of matrices, quadratic forms.

### Unit - II

**Differential Calculus I:** Successive differentiation, Leibnitz theorem and applications, Taylor's and Maclaurin's series (single variable), Expansion of functions, Asymptotes (Cartesian and Polar Co-ord.), Curve Tracing (for standard curves, Cartesian and Polar)

### Unit - III

**Differential Calculus II:** Concept of limit and continuity of a function of two and three variables, Partial derivatives, variable treated as constant, Euler's theorem on Homogeneous functions, total derivative, differentiation of an implicit function, chain rule, change of variables, Jacobian, Taylor's and Maclaurin's series(two variables). Maxima and minima of a function of two variables, Lagrange's method of undetermined multipliers

### Unit - IV

**Integral Calculus:** Application of single integration to find the volume and surface areas of solid of revolution, Double integrals, Change of order of integration, Areas enclosed by plane curves, Triple integrals, Volume of solids, Change of variables.

### **Text Books**

1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.

### **Reference Books**

- 1. G. B. Thomas, R. L. Finney, Calculus and Analytic Geometry, Pearson Education.
- 2. B. V. Ramana, Engineering Mathematics, Tata McGraw Hill
- 3. Michael D. Greenberg, *Advanced Engineering Mathematics*, Pearson Education, Prentice Hall.

| Course  | Course Title                                                                                                                                            | Teaching<br>Schedule |           | Allotr   | nent of Ma   | rks          | Duration  |                   |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|----------|--------------|--------------|-----------|-------------------|--|--|--|
| No.     |                                                                                                                                                         | L                    | neau<br>T | P        | Theory       | Sessional    | Total     | of Exam<br>(Hrs.) |  |  |  |
| HS-101N | Technical<br>Communication                                                                                                                              | 3                    | 1         | 0        | 75           | 25           | 100       | 3                 |  |  |  |
| Purpose | To enhance the students' communication skills by giving adequate exposure in reading, writing, listening and speaking skills and the related sub-skills |                      |           |          |              |              |           |                   |  |  |  |
|         |                                                                                                                                                         | Cot                  | ırse (    | Outcor   | nes (CO)     |              |           |                   |  |  |  |
| CO-1    | Know the process of                                                                                                                                     | tec                  | hnica     | l comn   | nunication   | and its com  | ponents.  |                   |  |  |  |
| CO-2    | Improve the langua                                                                                                                                      | _                    |           |          | istening Sl  | kills, Speak | ing Skil  | lls, Reading      |  |  |  |
| 60.2    | Skills and Writing S                                                                                                                                    |                      |           |          | 11 ' 17 1'   | 1 1          |           |                   |  |  |  |
| CO-3    | Construct basic and                                                                                                                                     |                      |           |          |              |              |           |                   |  |  |  |
| CO-4    | Enhance comprehen                                                                                                                                       | sion                 | skill     | s, prese | entation ski | lls, group d | iscussion | n skills etc.     |  |  |  |
|         | Create literature sensibility and learn life skills through it.                                                                                         |                      |           |          |              |              |           |                   |  |  |  |
|         | Develop confidence for communicating in English and create interest for the                                                                             |                      |           |          |              |              |           |                   |  |  |  |
|         | life-long learning of English language                                                                                                                  |                      |           |          |              |              |           |                   |  |  |  |

### **Unit-I**

**Introduction:** Meaning; Types; Role of Communication; Barriers to Communication

### **Unit-II**

### **Communicative Skills:**

i) Listening: Traits of a good listener; Barriers

- ii) Speaking: Achieving confidence, clarity and fluency; Paralinguistic features
- iii) Reading Skills: Vocabulary; Scanning; Skimming; the SQ3R Reading Technique
- iv) Writing: Characteristics; Language; Techniques for effective writing

### **Unit-III**

### **Professional Speaking:**

i) Group Discussion ii) Oral Presentation iii) Job Interview

### **Unit-IV**

### **Technical Writing:**

i) Technical letters ii) Job Application and Resume iii) Technical articles

### **Text Books**

- 1. Meenakshi Raman and Sangeeta Sharma, *Technical Communication: Principles and Practice*, Oxford University Press
- 2. M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill

### **Reference Books**

- 1. Wallace and Masters, Personality Development for Life and Work, Thomson Learning
- 2. Farhathullah, T. M. Communication Skills for Technical Students
- 3. Advanced Learner's Dictionary, Oxford University Press
- 4. Sanjay Kumar, Communication Skills, Oxford University Press

| Course<br>No. | Course Title                                                             | Teaching<br>Schedule |         | Allotr   | Duration of Exam |              |           |             |  |  |  |
|---------------|--------------------------------------------------------------------------|----------------------|---------|----------|------------------|--------------|-----------|-------------|--|--|--|
|               |                                                                          | L                    | T       | P        | Theory           | Sessional    | Total     | (Hrs.)      |  |  |  |
| BT-101N       | Fundamentals of                                                          | 3                    | 1       | 0        | 75               | 25           | 100       | 3           |  |  |  |
|               | Biotechnology                                                            |                      |         |          |                  |              |           |             |  |  |  |
| Purpose       | To familiarize the students with the basics of Biotechnology             |                      |         |          |                  |              |           |             |  |  |  |
|               |                                                                          | Cou                  | urse (  | Outcor   | nes (CO)         |              |           |             |  |  |  |
| CO-1          | Introduction to essen                                                    | ntial                | ls of l | ife and  | d macromo        | lecules esse | ntial for | growth and  |  |  |  |
|               | development                                                              |                      |         |          |                  |              |           |             |  |  |  |
| CO-2          | Defining the basic co                                                    | once                 | epts o  | f cell d | livision, ge     | nes and Imr  | nune sys  | tem         |  |  |  |
| CO-3          | Introduction of bas                                                      | sic                  | tools   | and      | techniques       | in Geneti    | ic Engir  | neering and |  |  |  |
|               | Transgenics                                                              |                      |         |          |                  |              |           |             |  |  |  |
| CO-4          | Explain the role of Biotechnology in Agriculture, Medicine, Environment, |                      |         |          |                  |              |           |             |  |  |  |
|               | Industry and Forensi                                                     | ic S                 | cience  | )        |                  |              |           |             |  |  |  |

### UNIT - I

**Introduction to living world:** Concept and definition of Biology; Characteristic features of living organisms; Cell ultra-structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

**Introduction to Biomolecules:** Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA& RNA: Structure and forms), vitamins, hormones and enzymes.

### **UNIT-II**

**Genetics:** Cell division- Mitosis and its utility to living systems. Meiosis and its genetic significance; **Gene**: Concept, location, definition and structure; Introduction to replication, transcription, translation, Mutations, Genetic disorders;**Human traits**: Genetics of blood groups, diabetes type I & II.

**Role of immune system in health and disease**: Brief introduction to morphology and pathogenicity of bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

### **UNIT-III**

**Concepts of Genetic Engineering:** Definition; Tools used in recombinant DNA Technology: Plasmids as nature's interlopers, restriction enzymes as nature's pinking-shears, Vectors as gene transfer vehicles.

**Transgenesis:** Production and significance of transgenic plants and animals; Basic concept of genetically modified organisms.

### **UNIT-IV**

**Applications of Biotechnology:** Definition of biotechnology; Applications of Biotechnology in Agriculture, Medicine, Environment, Industry and Forensic Science.

Role of biology in allied fields: Role of biology in Information Technology (Bioinformatics), Nanotechnology (Nanobiotechnology), Micro-electromechanical systems (Bio-MEMS) and Sensors (Biosensors). Ethical issues related to Biotechnology.

### **Text Book**

1. Deswal & Deswal, *Introduction to Biotechnology*, Dhanpat Rai Publications

### **Reference Books**

- 1. Bruce *et al.*, *Molecular Biology of cell*, (4th ed.) Alberts, Garland Science Publishing, New York.
- 2. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R., *Microbiology*, Tata McGraw Hill, New Delhi.
- 3. David L. Nelson and M.M. Cox, *Lehninger: Principles of Biochemistry* (3rd edition), Maxmillan/ Worth publishers.
- 4. Snusted & Simmons, Genetics.
- 5. Glick, B. R. and Pasternak, J.J., *Molecular Biotechnology: Principles Application of Recombinant DNA*. ASM press WashingtonDC.
- 6. Goldsby, R A,. Kindt, T.J, Osborne, B.A., *Kuby's Immunology*, W. H. Freeman and company, New York.
- 7. Watson, James D. and Gilman, M, *Recombinant DNA* (2nd Edition), W.H Freeman and Company, New York.
- 8. Malacinski, G. M., *Essentials of Molecular Biology* (4th ed.), Jones & Bartlet Publishers, Boston

| Course  | Course Title                                                             | Teaching |        |         | Allotr       | nent of Ma    | rks     | Duration |  |  |
|---------|--------------------------------------------------------------------------|----------|--------|---------|--------------|---------------|---------|----------|--|--|
| No.     |                                                                          | Schedule |        |         |              |               | of Exam |          |  |  |
|         |                                                                          | L        | L T P  |         | Theory       | Sessional     | Total   | (Hrs.)   |  |  |
| ME-105N | Engg. Drawing and Graphics                                               | 1        | 0      | 3       | 75           | 25            | 100     | 3        |  |  |
| Purpose | To draw and interpr<br>To understand the bo                              |          |        |         | •            |               |         | ts.      |  |  |
|         |                                                                          | Cot      | ırse ( | Outcor  | nes (CO)     |               |         |          |  |  |
| CO-1    | To familiarize with t                                                    | he p     | orojec | tions o | of points an | d straight li | nes     |          |  |  |
| CO-2    | To draw with the pro                                                     | ojec     | tion o | f plane | s and solid  | S             |         |          |  |  |
| CO-3    | To familiarize with the sectioning of solids and development of surfaces |          |        |         |              |               |         |          |  |  |
| CO-4    | To know the AUTOCAD basics and exercise the problems                     |          |        |         |              |               |         |          |  |  |

### Unit-I

**Introduction, Projection of Points:** Introduction to Engineering Equipments, Elements of Engineering Drawing, Types of Lines, Various types of projections, First and third angle systems of orthographic projections. Projections of points in different quadrants. Projection of Straight Lines:

**Projections of straight lines:** parallel to one or both reference planes, contained by one or both planes, perpendicular to one of the planes, inclined to one plane but parallel to the other plane, inclined to both the planes, true length of a line and its inclinations with reference planes, traces of a line.

### **Unit-II**

**Projection of planes:** Introduction, types of planes, Projection of planes by change of position method only, projection of plane perpendicular to a plane, with axis parallel to both planes, with axis parallel to one plane and inclined to the other plane.

**Projection of Solids:** Types of solids, Projections of Polyhedra Solids and Solids of Revolution – in simple positions with axis perpendicular to a plane, with axis parallel to both planes, with axis parallel to one plane and inclined to the other.

### **Unit-III**

**Section of Solids:** Introduction - section planes - apparent section - true section - sectional view - need for sectional view - cutting plane - cutting plane line.

Sectional view of simple solids such as Prism, Cylinders, Pyramids and Cones in simple positions Section plane perpendicular to one plane and parallel to the other, section plane perpendicular to one plane and inclined to the other.

**Development of Surfaces:** Development of surface of various simple solids in simple positions such as cubes, cylinders, prisms, pyramids etc.

### **Unit-IV**

**Orthographic views (First Angle Projection Only):** Three orthographic views of solids, Orthographic Views of Nuts & Bolts.

AUTOCAD basics: Cartesian and Polar Co-ordinate system, Absolute and Relative Co-ordinates systems.Basic Commands: Line, Point, Rectangle, Polygon, Circle, Arc, Ellipse, Polyline

Basic editing Commands: Basic Object Selection Methods, Window and Crossing Window Erase, Move, Copy, Offset, Fillet, Chamfer, Trim, Extend, Mirror Display Commands: Zoom, Pan, Redraw, and Regenerate Simple dimensioning and text, simple exercises.

### **Text Book**

- 1. T. Jeyapoovan, *Engineering Graphics using AUTOCAD 2000*, Vikas Publishing House
- 2. Basudeb Bhattacharyya, Machine Drawing, Oxford University Press, New Delhi

### **Reference Books**

- 1. Amar Pathak, Engineering Drawing, Dreamtech Press, New Delhi.
- 2. N.D. Bhatt and V.M.Panchal, *Engineering Drawing: Plane and Solid Geometry*, Charotar Publishing House.
- 3. Thomas E.French, Charles J.Vierck, Robert J.Foster, *Engineering drawing and graphic technology*, McGraw Hill International Editions.
- 4. P.S. Gill, *Engineering Graphics and Drafting*: Millennium Edition, S.K. Katariaand Sons.
- 5. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.

| Course<br>No. | Course Title                                                                                  | Teaching<br>Schedule |       | Allotr | Duration of Exam |             |          |               |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------|----------------------|-------|--------|------------------|-------------|----------|---------------|--|--|--|--|
|               |                                                                                               | L                    | T     | P      | Theory           | Sessional   | Total    | (Hrs.)        |  |  |  |  |
| ECE-          | Basics of                                                                                     | 3                    | 1     | 0      | 75               | 25          | 100      | 3             |  |  |  |  |
| 101N          | Electronics Engg.                                                                             |                      |       |        |                  |             |          |               |  |  |  |  |
| Purpose       | To familiarize the students with the basics of Electronics Engineering.  Course Outcomes (CO) |                      |       |        |                  |             |          |               |  |  |  |  |
| CO-1          | Explain the fundame                                                                           |                      |       |        | /                | asic semico | nductors | and diodes.   |  |  |  |  |
| CO-2          | Explain Bipolar J<br>Amplifier, Feedback                                                      | unc                  | tion  | Transi |                  |             |          |               |  |  |  |  |
| CO-3          | Discuss Operational Parameters and App                                                        | 1 A                  | mplif |        | P-Amp): B        | lock Diagr  | am, Coi  | nfigurations, |  |  |  |  |
| CO-4          | Discuss the Special Types of FETs, ChaTRIAC.                                                  |                      |       |        |                  |             |          | ` , , ,       |  |  |  |  |

**Semiconductor Diodes:** Active Components (Current & Voltage Sources) and Passive Electronic components (Resistors, Capacitors & Inductors), concept of P-N diode, Diode Equivalent Circuits, Load Line Analysis, Diode as a Switch, Breakdown Mechanisms, Zener Diode: Operation and Applications, Rectifiers: Half Wave and Full Wave Rectifiers, Photo Diode and Applications, LED.

### Unit – II

**Bipolar Junction Transistor:** Different Types of Transistors, basic operation of a transistor, Amplifying Action of BJT, Input and Output Characteristics of Common Base (CB), Common Collector (CC) and Common Emitter (CE) Configurations, Operating Point, Transistor as a switch and amplifier, Biasing: Fixed Bias, Self Bias, Voltage Divider Bias, Concept of Feedback in amplifiers, Advantages of negative feedback, Oscillators: Barkhausen criterion for oscillations.

### Unit – III

**Operational Amplifier:** Operational Amplifier: Basic Block Diagram, Equivalent Circuit, Characteristics of Ideal Op-Amp, Concept of Virtual Short, Ideal Op-Amp vs Practical Op-Amp, Configurations of Op-Amp: Inverting, Non-Inverting, Differential, Parameters of Op-Amp: Bandwidth, Slew Rate, Gain, CMRR, PSRR, Input offset voltage, Output offset voltage, Op-Amp Applications: Summing and Difference Amplifiers, Integrator and Differentiator.

### Unit – IV

**Special Semiconductor Devices:** Operation and I-V Characteristics of enhancement and depletion MOSFET, concept of n-MOSFET, p-MOSFET and C-MOSFET, DIAC: Characteristics, Operation and Applications, UJT: Characteristics, Operation and

Applications, SCR: Characteristics, Operation and Applications, TRIAC: Characteristics, Operation and Applications.

### **Text Books**

1. Boylestad & Nashelsky, *Electronics Devices & Circuits*, Pearson Education.

### **Reference Books**

- 1. Basic Electronics Engineering, Wiley Precise Textbook Series, Wiley India.
- 2. N. N. Bhargava S. C. Gupta D. C. Kulshreshtha, *Basic Electronics and Linear Circuits*, Tata McGraw-Hill Education
- 3. Millman & Halkias, Integrated Electronics, Mc-Graw Hill.
- 4. David A. Bell, *Electronic Devices and Circuits*, Oxford University Press.
- 5. Donald L. Schilling & Charles Belove, *Electronics Circuits*, Mc-Graw Hill.
- 6. Thomas L. Floyd, Electronic Devices, Pearson Education
- 7. Malvino, Electronics Principles, Mc-Graw Hill.

| Course  | Course Title                                                                                                                                                                | Teaching                                                             |        |        | Allotr        | nent of Ma   | rks       | Duration     |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|--------|---------------|--------------|-----------|--------------|--|--|--|--|
| No.     |                                                                                                                                                                             | Sc                                                                   | hedul  | le     |               |              |           | of Exam      |  |  |  |  |
|         |                                                                                                                                                                             | L                                                                    | T      | P      | Theory        | Sessional    | Total     | (Hrs.)       |  |  |  |  |
| EE-101N | Electrical                                                                                                                                                                  | 4                                                                    | 1      | 0      | 75            | 25           | 100       | 3            |  |  |  |  |
|         | Technology                                                                                                                                                                  |                                                                      |        |        |               |              |           |              |  |  |  |  |
|         | Fundamentals                                                                                                                                                                |                                                                      |        |        |               |              |           |              |  |  |  |  |
| Purpose | To familiarize the st                                                                                                                                                       | To familiarize the students with the basics of Electrical Technology |        |        |               |              |           |              |  |  |  |  |
|         |                                                                                                                                                                             | Cou                                                                  | ırse ( | Outcon | nes (CO)      |              |           |              |  |  |  |  |
| CO-1    | Deals with steady sta                                                                                                                                                       | te c                                                                 | ircuit | analys | is subject to | o DC         |           |              |  |  |  |  |
| CO-2    | Deals with AC fundacircuit parameters so                                                                                                                                    |                                                                      |        |        |               | cuit respons | se subjec | et to AC and |  |  |  |  |
| CO-3    | Deals with introductory Balanced Three Phase System analysis in first part and second part deals with qualitative analysis of magnetic circuits & Single Phase Transformer. |                                                                      |        |        |               |              |           |              |  |  |  |  |
| CO-4    | Explains the general constructional features and working of various types of                                                                                                |                                                                      |        |        |               |              |           |              |  |  |  |  |
|         | Electrical Machines                                                                                                                                                         |                                                                      |        |        |               |              |           |              |  |  |  |  |
|         | ( qualitative analysis only)                                                                                                                                                |                                                                      |        |        |               |              |           |              |  |  |  |  |

**D.C.** circuits excited by independent voltage/current source (steady state): Ohm's Law, junction & node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop analysis of resistive circuit in the context of dc voltages & currents, Node-voltage analysis of resistive circuit in the context of dc voltages & currents.Star-Delta transformation for set of pure resistors. Relevant D.C. circuit analytical problems for quantitative analysis.

**Network Theorems:** Superposition, Thevenin's and Norton's theorems all in the context of dc voltage and current sources acting in a resistive network,maximum power transfer theorem, Relevant D.C. circuit analytical problems for quantitative analysis.

### Unit - II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodic signal, instantaneous & peak values, polar & rectangular form representation of impedances & phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method. RMS & average values of various waveforms including clipped, clamped, half wave rectified& full wave rectified sinusoidal periodic waveforms etc. Generation of alternating emf (dynamo). Relevant analytical problems for quantitative analysis.

**A.C.** Circuits: Behavior of various components fed by A.C. source. (steady state response of pure R, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous real axis scale and corresponding phasor diagrams), P.F. active, reactive & apparent power. Frequency response of Series & Parallel RLC circuit including resonance, Q factor, cut-off frequency & bandwidth. Relevant A.C. circuit analytical problems solutions using 'j-omega' operator method.

### Unit - III

**Balanced Three Phase Systems:** Necessity & advantage of three phase system, mode of generation of 3 phase supply. Phase and line voltages & currents, power. Measurement of 3-phase power by two wattmeter method for various types of star & delta connected balanced resistive, inductive & capacitive loads including phasor diagrams at various power factors. Phase sequence significance. Relevant problems for quantitative analysis.

**Electromagnetism & Magnetic circuits (Qualitative analysis only):** Laws of EMI, statically & dynamically induced emf, self & mutual induction, dot notation, RH Screw rule, Fleming's RH & LH rules. MMF, Relation between magnetic flux, m.m.f. and reluctance, magnetic fringing. Hysteresis & Eddy current losses & their minimization

**Single Phase Transformer (Qualitative analysis only):** Principle, construction & emf equation. Phasor diagram for ideal case and at no load. Winding resistance & leakage reactance. Actual transformer at resistive, inductive & capacitive loads with phasor diagrams. Losses & Efficiency, condition of maximum efficiency, regulation. OC & SC test, direct load test, equivalent circuit, concept of auto transformer.

### Unit - IV

### **ELECTRICAL MACHINES (Qualitative analysis only)**

Prime mover, Stator-Rotor, Field-Armature, necessity of a starter.

**D.C. Machines**: Principle, general construction & working. Split ring /Commutator working in DC generator & motor, generated emf equation, Torque Equation. Types of DC Machines, speed control of DC Shunt motor.

**A.C. Machines: 3-phase Induction motor:** Concept of rotating magnetic field, principle, types, general construction and working. Concept of slip & its significance.

Synchronous Generator (alternator): Principle, general construction & working.

**Synchronous motor:** Principle, general construction & working.

General comparison amongst squirrel cage I.M., phase wound rotor type I.M. & DC motor. General comparison between alternator & DC generator.

### **Text Books**

- 1. Vijay Kumar Garg, Basic Electrical Engg: A complete Solution, Wiley India Ltd.
- 2. Rajendra Prasad, Electrical Engg. Fundamentals, PHI Pub.

### **Reference Books**

- 1. S.K. Sahdev, Basic Electrical Engg., Pearson Education
- 2. PV Prasad, Basic Electrical Engg, Sivangaraju, Cengage Learning Pub.
- 3. Bobrow, *Electrical Engg. Fundamentals*, Oxford Univ. Press
- 4. Kulshreshtha, Basic Electrical Engg., McGraw Hill Pub.

| Course<br>No. | Course Title                                                                     | Teaching<br>Schedule |         | Allotment of Marks |             |              | Duration of Exam |            |  |  |  |  |
|---------------|----------------------------------------------------------------------------------|----------------------|---------|--------------------|-------------|--------------|------------------|------------|--|--|--|--|
|               |                                                                                  | L                    | T       | P                  | Theory      | Sessional    | Total            | (Hrs.)     |  |  |  |  |
| CSE-101N      | Introduction to Computer Programming                                             | 3                    | 1       | 0                  | 75          | 25           | 100              | 3          |  |  |  |  |
| Purpose       | To familiarize the students with the basics of Computer System and C Programming |                      |         |                    |             |              |                  |            |  |  |  |  |
|               |                                                                                  | Cor                  | urse (  | Outcon             | nes (CO)    |              |                  |            |  |  |  |  |
| CO-1          | Describe the overv                                                               | iew                  | of (    | Compu              | ter System  | n and Leve   | els of P         | rogramming |  |  |  |  |
|               | Languages.                                                                       |                      |         |                    |             |              |                  |            |  |  |  |  |
| CO-2          | Learn the basic conc                                                             | cepts                | s of C  | Langu              | iage.       |              |                  |            |  |  |  |  |
| CO-3          | Description and applications of arrays and functions.                            |                      |         |                    |             |              |                  |            |  |  |  |  |
| CO-4          | Description and app                                                              | lica                 | tions o | of poin            | ters and us | er defined d | lata types       | S.         |  |  |  |  |

### Unit – I

**Overview of Computers**: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

**Introduction to programming language**: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

**Problem Analysis**: Problem solving techniques, Algorithms and Flowchart representation.

### Unit – II

**Overview of C**: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical, bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

**Input/output**: Unformatted & formatted I/O function in C.

**Control statements**: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

### Unit – III

**Arrays**: Definition, types, initialization, processing an array, String handling.

**Functions**: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

### Unit - IV

**Pointers**: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

**Structure & Union**: Definition, processing, Structure and pointers, passing structures to functions, use of union.

**Data files**: Opening and closing a file, I/O operations on files.

### **Text Books**

- 1. Pradip Dey and Manas Ghose, *Computer Fundamental and Programming in C*, Oxford Pub.
- 2. Vikas Gupta, Computer Concepts and C Programming, Dreamtech.

### **Reference Books**

- 1. Forouzan Behrouz, *Computer Science: A Structured Programming Approach Using C*, Cengage Learning.
- 2. Brian W. Kernighan Dennis Ritchie, C Programming Language, Pearson
- 3. Yashwant Kanetker, Let us C, BPB Publications.
- 4. A K Sharma, Fundamentals of Computers & Programming, Dhanpat Rai Publications
- 5. Kashi Nath Dey, Samir Bandyopadhyay, C Programming Essentials, Pearson.
- 6. Rajaraman V., Computer Basic and C Programming, Prentice Hall of India Learning.

| Course<br>No. | Course Title                                                      |                                                                                                                                                                                | Teaching<br>Schedule |        | Allotr     | Duration of Exam |         |        |
|---------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|------------|------------------|---------|--------|
|               |                                                                   | L                                                                                                                                                                              | T                    | P      | Practical  | Sessional        | Total   | (Hrs.) |
| AS-107N       | Applied Physics<br>Lab-I                                          | 0                                                                                                                                                                              | 0                    | 2      | 30         | 20               | 50      | 3      |
| Purpose       | Give the knowledge of basic practicals of Physics in Engineering. |                                                                                                                                                                                |                      |        |            |                  |         |        |
|               |                                                                   | Cor                                                                                                                                                                            | ırse (               | Outcor | nes (CO)   |                  |         |        |
| CO-1          | To make the studen                                                | ts fa                                                                                                                                                                          | miliar               | with t | he experim | ents related     | with op | tics.  |
| CO-2          |                                                                   | To make the students familiar with the experiments related with optics.  To give the knowledge of handling of the experiments related with resistance using different methods. |                      |        |            |                  |         |        |

- 1. To find the wavelength of monochromatic light by Newton's ring experiment.
- 2. To find the wavelength of various colours of white light with the help of plane transmission diffraction grating.
- 3. To verify Newton's formula and hence to find the focal length of the given convex lens.
- 4. To find the specific rotation of sugar solution by using a Polarimeter.
- 5. To find the frequency of A.C. mains by using Sonometer and horse shoe magnet.
- 6. To find low resistance by Carrey-Foster bridge.
- 7. To find the resistance of a galvanometer by post office box.
- 8. To find the value of high resistance by substitution method.
- 9. To convert a galvanometer into an ammeter of desired range and verify the same.
- 10. To find high resistance by leakage method.
- 11. To compare the capacitances of two capacitors by de-sauty's bridge and hence to find the dielectric constant of a medium.
- 12. To find the wavelength of sodium light by Michelson's interferometer.
- 13. To find the resolving power of telescope.
- 14. To find the wavelength of sodium light using Fresnel bi-prism.

*Note:* Student will be required to perform at least 10 experiments out of the given list.

### **Recommended Books**

- 1. C.L. Arora, B. Sc. Practical Physics, S. Chand & Company Ltd.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, (KPH).

| Course<br>No. | Course Title               | Teaching<br>Schedule                                          |         | Allotr  | Duration of Exam |               |         |        |  |
|---------------|----------------------------|---------------------------------------------------------------|---------|---------|------------------|---------------|---------|--------|--|
|               |                            | L                                                             | T       | P       | Practical        | Sessional     | Total   | (Hrs.) |  |
| AS-109N       | Applied Chemistry<br>Lab-I | 0                                                             | 0       | 2       | 30               | 20            | 50      | 3      |  |
| Purpose       | To train the students      | To train the students for handling of chemicals and glassware |         |         |                  |               |         |        |  |
|               |                            | Cor                                                           | urse (  | Outcor  | nes (CO)         |               |         |        |  |
| CO-1          | Testing of certain pr      | ope                                                           | rties o | of wate | er samples       |               |         |        |  |
| CO-2          | Determination of so        | me (                                                          | of the  | prope   | rties of lubr    | ricants       |         |        |  |
| CO-3          | To determine some i        | imp                                                           | ortant  | prope   | rties of liqu    | ids           |         |        |  |
| CO-4          | To make familiar wi        | th t                                                          | he use  | of fla  | me photom        | eter, spectro | ophotom | eter   |  |

- 1. Determination of temporary and permanent hardness by EDTA method **or** Determination of Ca<sup>2+</sup> and Mg<sup>2+</sup> hardness of water using EDTA method.
- 2. To determine the alkalinity of given water sample.
- 3. Determination of Dissolved Oxygen (**DO**) in given water sample.
- 4. To determine the flash point and fire point of an oil by Pensky-Marten flash point apparatus.
- 5. Determination of viscosity of lubricant by Red Wood Viscometer (No. 1 and No. 2).
- 6. To determine the strength of HCl solution by titrating it with NaOH solution condutometrically.
- 7. To determine the amount of sodium and potassium ions in a given water sample by flame photometer.
- 8. To determine the total iron content (Fe<sup>2+</sup> and Fe<sup>3+</sup>) in an iron ore by **internal/self/external** indicator method.
- 9. To determine the concentration of KMnO<sub>4</sub> solution spectrophotometrically.
- 10. To determine the coefficient of viscosity of a liquid by Ostwald viscometer.
- 11. To determine the refractive indices of given organic liquid using Abbe's refractometer.
- 12. To determine the strength of strong acid by titrating it with strong base using pH meter.
- 13. To determine the surface tension of a given liquid by means of stalagmometer by drop number method.

*Note:* Student will be required to perform at least 10 experiments out of the given list.

### **Recommended Books**

- 1. S.S. Dara, A Text Book on Experimental and Calculation: Engineering Chemistry, S. Chand & Company (Ltd.)
- 2. Shashi Chawla, *Essential of Experimental Engineering Chemistry*, Dhanpat Rai Publishing Company.
- 3. O.P. Virmani, A.K. Narula, *Theory & Practice Applied Chemistry*, New Age.

| Course<br>No. | Course Title                                                                                                                                              | Teaching<br>Schedule |        |          | Allotn      | Duration of Exam |           |              |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|----------|-------------|------------------|-----------|--------------|
|               |                                                                                                                                                           | L                    | T      | P        | Practical   | Sessional        | Total     | (Hrs.)       |
| ME-107N       | Engg. Workshop                                                                                                                                            | 0                    | 0      | 3        | 30          | 20               | 50        | 3            |
| Purpose       | To aware the students with hands on experience on different trades of engineering like fitting, carpentry, smithy, welding, machine shop and sheet metal. |                      |        |          |             |                  |           |              |
|               |                                                                                                                                                           | Cot                  | ırse ( | Outcor   | nes (CO)    |                  |           |              |
| CO-1          | Prepare models of v                                                                                                                                       | ario                 | us ba  | sic pro  | ototypes in | the carpent      | ry trade  | such as Lap  |
|               | joint, T joint, Dove t                                                                                                                                    | ail j                | oint,  | Mortis   | e & Tenon   | joint, Cross     | s-Lap joi | nt           |
| CO-2          | Prepare models of                                                                                                                                         | vario                | ous b  | asic pi  | ototypes in | the trade        | of Weld   | ling such as |
|               | Lap joint, Lap & T j                                                                                                                                      | oint                 | , Edg  | e joint, | Butt joint  | and Corner       | joint.    |              |
| CO-3          | Comprehend vario                                                                                                                                          | us n                 | nachi  | ne too   | ls and prep | are specifie     | ed mode   | ls involving |
|               | various operations                                                                                                                                        | in                   | the 1  | trade    | of Machini  | ing on lat       | he, drill | ling, shaper |
|               | machines                                                                                                                                                  |                      |        |          |             |                  |           |              |
| CO-4          | Identify fitting, marl                                                                                                                                    | cing                 | , carp | entry,   | measuring   | and machin       | e tools.  |              |

- 1. To study different types of measuring tools used in metrology and determine least counts of vernier calipers, micrometers and vernier height gauges.
- 2. To study different types of machine tools (lathe, shape, milling, drilling machines)
- 3. To prepare a job on a lathe involving facing, outside turning, taper turning, step turning, radius making and parting-off.
- 4. To study different types of fitting tools and marking tools used in fitting practice.
- 5. To prepare lay out on a metal sheet by making and prepare rectangular tray, pipe shaped components e.g. funnel.
- 6. To prepare joints for welding suitable for butt welding and lap welding.
- 7. To perform pipe welding.
- 8. To study various types of carpentry tools and prepare simple types of at least two wooden joints.
- 9. To prepare simple engineering components/ shapes by forging.
- 10. To prepare mold and core assembly, to put metal in the mold and fettle the casting.
- 11. To prepare horizontal surface/ vertical surface/ curved surface/ slots or V-grooves on a shaper/ planner.
- 12. To prepare a job involving side and face milling on a milling machine

**Note:** (i) At least 10 experiments are to performed by students in a semester; (ii) At least 7 experiments should be performed from the above list; remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.

| Course  | <b>Course Title</b>                       | Te                                                                    | eachir | ıg      | Allotr       | nent of Ma   | rks      | Duration      |
|---------|-------------------------------------------|-----------------------------------------------------------------------|--------|---------|--------------|--------------|----------|---------------|
| No.     |                                           | Schedule                                                              |        |         |              |              | of Exam  |               |
|         |                                           | L                                                                     | T      | P       | Practical    | Sessional    | Total    | (Hrs.)        |
| EE-103N | Electrical                                | 0                                                                     | 0      | 2       | 30           | 20           | 50       | 3             |
|         | Technology Lab                            |                                                                       |        |         |              |              |          |               |
| Purpose | ·                                         | To familiarize the students with the Electrical Technology Practicals |        |         |              |              |          |               |
|         |                                           | Cor                                                                   | urse ( | Outcor  | nes (CO)     |              |          |               |
| CO-1    | Understand basic cor                      | ncep                                                                  | ots of | Netwo   | rk theorems  | S            |          |               |
| CO-2    | Deals with steady statechniques           | ate f                                                                 | reque  | ncy re  | esponse of l | RLC circuit  | paramet  | ters solution |
| CO-3    | Deals with introducto                     | ory                                                                   | Single | e Phase | Transform    | er practical | ls       |               |
| CO-4    | Explains the const<br>Electrical Machines | ruc                                                                   | tional | featu   | res and p    | racticals o  | f variou | is types of   |

- 1. To verify KVL and KCL.
- 2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.
- 3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source
- 4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.
- 5. To study frequency response of a series R-L-C circuit on CRO and determine resonant frequency& Q- factor for various Values of R, L, and C.
- 6. To study frequency response of a parallel R-L-C circuit on CRO and determine resonant frequency & Q -Factor for various values of R, L, and C.
- 7. To perform O.C. and S.C. tests on a single phase transformer.
- 8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.
- 9. To perform speed control of DC shunt motor.
- 10. To perform starting & reversal of direction of a three phase induction motor.
- 11. Measurement of power in a 3 phase balanced system by two watt meter method.
- 12. To calibrate a single phase energy meter.
- 13. To study connections & working of fluorescent tube light.

*Note:* Student will be required to perform at least 9 experiments out of the given list.

| Course<br>No. | Course Title                      | Teaching<br>Schedule                     |         |               | Allotr       | Duration of Exam                                                                                                                                       |       |        |  |  |  |  |
|---------------|-----------------------------------|------------------------------------------|---------|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--|--|--|--|
|               |                                   | L                                        | T       | P             | Practical    | Sessional                                                                                                                                              | Total | (Hrs.) |  |  |  |  |
| CSE-103N      | Computer                          | 0                                        | 0       | 2             | 30           | 20                                                                                                                                                     | 50    | 3      |  |  |  |  |
|               | Programming Lab                   |                                          |         |               |              |                                                                                                                                                        |       |        |  |  |  |  |
| Purpose       | To Introduce studen               | To Introduce students with C Programming |         |               |              |                                                                                                                                                        |       |        |  |  |  |  |
|               |                                   | Cor                                      | urse (  | <b>Jutcor</b> | nes (CO)     |                                                                                                                                                        |       |        |  |  |  |  |
| CO-1          | Understand the basic              | c co                                     | ncept   | s of C        | Programmi    | ng                                                                                                                                                     |       |        |  |  |  |  |
| CO-2          | Implementation of                 | arra                                     | ys an   | d func        | tions.       |                                                                                                                                                        |       |        |  |  |  |  |
| CO-3          | Implementation of                 | poii                                     | nters a | and use       | er defined d | ata types.                                                                                                                                             |       |        |  |  |  |  |
| CO-4          | Write individual and and results. | l gro                                    | oup re  | ports:        | present obj  | Implementation of pointers and user defined data types.  Write individual and group reports: present objectives, describe test procedures and results. |       |        |  |  |  |  |

### **List of Programs**

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to calculate the following Sum:

Sum=1 
$$-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} \dots$$

- Sum=1  $-\frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \frac{x^8}{8!}$ ... 5. Write a program to find the roots of a quadratic equation.
- 6. a) Write a function to generate Pascal's triangle.
  - b) Write a function to construct a pyramid of numbers.
- 7. Write a C functions to find both the largest and smallest number of an array of integers.
- 8. Write a program for addition of Two Matrices
- 9. Write a program for calculating transpose of a matrix.
- 10. Write a program for Matrix multiplication by checking compatibility
- 11. Write programs that use both recursive and non-recursive functions for the following
  - To find the factorial of a given integer.
  - b. To find the GCD (greatest common divisor) of two given integers.
- 12. Write a function that uses functions to perform the count the lines, words and characters in a given text.
- 13. Write a program to explores the use of structures, union and other user defined variables
- 14. Write a program to print the element of array using pointers
- 15. Write a program to implement call by reference
- 16. Write a program to print the elements of a structure using pointers
- 17. Write a program to read a string and write it in reverse order
- 18. Write a program to concatenate two strings
- 19. Write a program to check that the input string is a palindrome or not.
- 20. Write a program which copies one file to another.
- 21. Write a program to reverse the first n characters in a file.

Note: Student will be required to perform at least 10 programs out of the given list.

| Course  | Course Title                                                                                                  | Teaching |        | Allotr  | nent of Ma    | rks           | Duration |            |
|---------|---------------------------------------------------------------------------------------------------------------|----------|--------|---------|---------------|---------------|----------|------------|
| No.     |                                                                                                               | Schedule |        |         |               |               | of Exam  |            |
|         |                                                                                                               | L        | T      | P       | Practical     | Sessional     | Total    | (Hrs.)     |
| ECE-    | Basic Electronics                                                                                             | 0        | 0      | 2       | 30            | 20            | 50       | 3          |
| 103N    | Lab-I                                                                                                         |          |        |         |               |               |          |            |
| Purpose | To familiarize the students with the basics of Electronics Engineering, PCB design and fabrication processes. |          |        |         |               |               |          |            |
|         |                                                                                                               | Cor      | ırse ( | Outcor  | mes (CO)      |               |          |            |
| CO-1    | Study and Identifica                                                                                          | tion     | of va  | rious 1 | basics electi | ronics comp   | onents   |            |
| CO-2    | Study and perform MOSFET, OP-Amp                                                                              |          | e exp  | perime  | ental verific | cation of o   | diodes,  | BJT, JFET, |
| CO-3    | To provide the know electronic circuits.                                                                      | led      | ge in  | assem   | bling and te  | esting of the | PCB ba   | sed        |

- 1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Switches (SPDT, DPDT and DIP), Bread Boards, Diodes, BJTs, JFETs, MOSFETs, Power Transistors, SCRs and LEDs.
- 2. Study the operation of Digital Multi Meter, Function / Signal Generator, Regulated Power Supply (RPS), Cathode Ray Oscilloscopes; Amplitude, Phase and Frequency of Sinusoidal Signals on CRO.
- 3. To study & perform the Experimental Verification of V-I characteristics of PN- diode in forward and reverse bias & study of various parameters of diode like threshold voltage and breakdown voltage etc.
- 4. To study & perform the Experimental Verification of Half-Wave & Full-Wave Rectifier and calculate its ripple factor, efficiency and PIV.
- 5. To study & perform the Experimental Verification of Zener Diode as a Voltage Regulator and calculate its parameters.
- 6. To study & perform the Experimental Verification of the input and output characteristics of BJT in common-emitter configuration & calculate all its parameters.
- 7. To study & perform the Experimental Verification of Op-Amp as Inverting, Non-Inverting, Differential amplifier & calculate its Voltage gain.
- 8. To study & perform the Experimental Verification of Summing and Difference amplifier & calculate its Voltage gain.
- 9. To study & perform the Experimental Verification of the I-V characteristics of JFET and MOSFET & calculate all its parameters.
- 10. Simulation of simple electronic circuits and analyzing its input and output waveforms using any of EDA tools.

**Note:** Experiments are to be performed using bread-board and components only.

| Course<br>No. | Course Title                                                                               | Teaching<br>Schedule |        | Alloti  | Duration of Exam |              |           |               |
|---------------|--------------------------------------------------------------------------------------------|----------------------|--------|---------|------------------|--------------|-----------|---------------|
|               |                                                                                            | L                    | T      | P       | Theory           | Sessional    | Total     | (Hrs.)        |
| AS-102N       | Applied Physics -<br>II                                                                    | 4                    | 1      | 0       | 75               | 25           | 100       | 3             |
| Purpose       | To introduce the fundamentals of solid state physics and its applications to the students. |                      |        |         |                  |              |           | ations to the |
|               |                                                                                            | Cou                  | urse ( | Outcor  | nes (CO)         |              |           |               |
| CO-1          | To make the student                                                                        | s av                 | vare o | f basic | terminolog       | gy of crysta | l structu | re.           |
| CO-2          | Introduce the element understanding the co                                                 |                      | •      |         |                  | *            | will be   | e useful in   |
| CO-3          | Discussion of classical free electron theory, quantum theory and Band theory of solids.    |                      |        |         |                  |              |           |               |
| CO-4          | Basics and application                                                                     | ons                  | of sup | percon  | ductivity ar     | nd nanomate  | erials.   |               |

Crystal Structure: Crystalline and Amorphous solids, Crystal Structure: lattice translation vector, symmetry operations, space lattice, basis; Unit cell and Primitive cell, Fundamental types of lattices: two-dimensional and three dimensional Bravais lattices; Characteristics of Unit cells: Simple Cubic (SC), Body Centred Cubic (BCC), Face Centred Cubic (FCC), Hexagonal Close Packed (HCP) structure; Simple crystal structures: Sodium Chloride, Cesium Chloride, Diamond, Cubic Zinc Sulfide; Miller Indices, Bonding in Solids, Point defects in crystals: Schottky and Frenkel defects.

### Unit – II

**Quantum Theory:** Need and origin of Quantum concept, Wave-particle duality, Phase velocity and group velocity, Uncertainty Principle and Applications; Schrodinger's wave equation: time-dependent and time –independent; Physical Significance of wave function  $\psi$ .

### Unit – III

**Free Electron Theory:** Classical free electron theory: electrical conductivity in metals, thermal conductivity in metals, Wiedemann-Franz law, success and drawbacks of free electron theory; Quantum free electron theory: wave function, eigen values; Fermi-Dirac distribution function, Density of states, Fermi energy and its importance, Thermionic Emission (qualitative).

**Band theory of Solids:** Bloch theorem, Kronig-Penney Model (qualitative), E versus k diagram, Brillouin Zones, Concept of effective mass of electron, Energy levels and energy bands, Distinction between metals, insulators and semiconductors, Hall effect and its Applications.

### **Unit –IV**

**Superconductivity:** Introduction, General features of Superconductors, Meissner effect, Types of superconductors, Elements of BCS theory, London equations, Applications of superconductivity.

**Nanomaterials:** Introduction, Synthesis of nanomaterials: Top-down and Bottom-up approach, Sol-Gel and Ball Milling methods, Properties of Nanomaterials, Applications of Nanomaterials.

### **Text Books**

- 1. P.K. Diwan, Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. S.P. Taneja, Modern Physics for Engineers, R. Chand & Co.

### **Reference Books**

- 1. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons.
- 2. Arthur Beiser, *Concepts of Modern Physics*, Tata McGraw-Hill Publishing Company Limited.
- 3. S.O. Pillai, Solid State Physics, New Age International (P) Limited.
- 4. J.L. Powell, B. Crasemann, *Quantum Mechanics*, Narosa Publishing House.
- 5. C.P. Poole, F.J. Owens, *Introduction to Nanotechnology*, John Wiley & Sons (Asia) Pte. Ltd.

| Course<br>No. | Course Title                                                                                                                                                                          | Teaching<br>Schedule |         | Allotment of Marks |               |               | Duration of Exam |              |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------------------|---------------|---------------|------------------|--------------|
|               |                                                                                                                                                                                       | L                    | T       | P                  | Theory        | Sessional     | Total            | (Hrs.)       |
| AS-104N       | Applied                                                                                                                                                                               | 4                    | 1       | 0                  | 75            | 25            | 100              | 3            |
|               | Mathematics -II                                                                                                                                                                       |                      |         |                    |               |               |                  |              |
| Purpose       | To acquaint the students with the basic use of theory of equations, Laplace transform and its applications, Ordinary differential equation and its applications, and vector calculus. |                      |         |                    |               |               |                  |              |
|               |                                                                                                                                                                                       | Cot                  | ırse (  | Outcor             | nes (CO)      |               |                  |              |
| CO-1          | How to find the                                                                                                                                                                       |                      |         |                    |               |               |                  | -            |
|               | polynomials, to solv                                                                                                                                                                  | e th                 | ne inte | egrals             | by the beta   | a and Gamn    | na functi        | ions, and by |
|               | the Leibnitz's rule for                                                                                                                                                               | or di                | iffere  | ntiatio            | n under the   | integral sig  | n.               |              |
| CO-2          | Introduction about t                                                                                                                                                                  |                      |         |                    |               |               | l how it         | is useful in |
|               | solving the definite                                                                                                                                                                  | nteg                 | grals a | and ini            | tial value p  | roblems.      |                  |              |
| CO-3          | Methods to solve the                                                                                                                                                                  | e OI                 | DE an   | d som              | e of its appl | lications.    |                  |              |
| CO-4          | How to perform the                                                                                                                                                                    | de                   | rivati  | ve and             | l integral o  | of the vector | rs, its ap       | plication to |
|               | find the line, surface                                                                                                                                                                | and                  | l volu  | me int             | egrals.       |               |                  |              |

**Theory of Equations:** Introduction, formation of equations, Relation between roots and coefficients, Reciprocal Equations, Transformation of equations

Integral Calculus: Beta and Gamma functions, Evaluation of integrals by Leibnitz's rule (Differentiation under the Integral sign)

### Unit - II

Laplace Transforms and its applications: Laplace transforms: Basic concepts, Existence conditions, transform of elementary functions, Properties of Laplace transforms, transform of derivatives and integrals, multiplication and division property, Evaluation of integrals by Laplace transforms, Inverse transforms, The Convolution theorem, Unit step function, second shifting theorem, Dirac's Delta function, Application to linear differential equations and simultaneous linear differential equations with constant coefficients.

### Unit – III

**Ordinary Differential Equations and its applications:** Exact differential equations, Equations reducible to exact differential equations, Applications of differential equations of first order and first degree to simple electric circuits, Newton's law of cooling, heat flow and orthogonal trajectories.

Linear differential equations of second and higher order, complete solution, complementary function and particular integral, method of variation of parameters and method of undetermined coefficients to find the particular integral, Cauchy's and Legendre's linear equations, simultaneous linear equations with constant coefficients.

### Unit - IV

**Vector Calculus:** Differentiation of Vectors, Scalar and vector point functions, Gradient of a scalar field and directional derivative, divergence and Curl of a vector field and their physical interpretations, line integrals, surface integral, volume integral, Green's theorem in the plane, Stoke's Theorem, Gauss Divergence Theorem(without proof) and their applications.

### **References Books**

- 1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- 2. G. B. Thomas, R. L. Finney, Calculus and Analytic Geometry, Pearson Education.
- 3. B. V. Ramana, *Engineering Mathematics*, Tata McGraw Hill
- 4. Michael D. Greenberg, *Advanced Engineering Mathematics*, Pearson Education, Prentice Hall.

| Course  | Course Title                                                               | Teaching |       | Allotn | rks       | Duration  |       |         |
|---------|----------------------------------------------------------------------------|----------|-------|--------|-----------|-----------|-------|---------|
| No.     |                                                                            | Sc       | hedul | le     |           |           |       | of Exam |
|         |                                                                            | L        | T     | P      | Practical | Sessional | Total | (Hrs.)  |
| AS-106N | Applied Physics<br>Lab-II                                                  | 0        | 0     | 2      | 30        | 20        | 50    | 3       |
| Purpose | To give the practical knowledge of handling the sophisticated instruments. |          |       |        |           |           |       |         |
|         | Course Outcomes (CO)                                                       |          |       |        |           |           |       |         |
| CO      |                                                                            |          |       |        |           |           |       |         |

- 1. To find the frequency of ultrasonic waves by piezoelectric methods.
- 2. To find the value of e/m for electrons by Helical method.
- 3. To find the ionisation potential of Argon/Mercury using a thyratron tube.
- 4. To study the variation of magnetic field with distance and to find the radius of coil by Stewart and Gee's apparatus.
- 5. To study the characteristics of (Cu-Fe, Cu-Constantan) thermocouple.
- 6. To find the value of Planck's constant by using photoelectric cell.
- 7. To find the value of coefficient of self inductance by using a Rayleigh bridge.
- 8. To find the value of Hall Coefficient of semiconductor.
- 9. To study the V-I characteristics of a p-n diode.
- 10. To find the band gap of intrinsic semiconductor using four probe method.
- 11. To calculate the hysteresis loss by tracing a B-H curve.
- 12. To verify Richerdson thermionic equation.
- 13. To find the flashing and quenching potential of Argon and to find the capacitance of unknown capacitor.
- 14. To find the temperature coefficient of resistance by using Pt resistance thermometer by post office box.

*Note:* Student will be required to perform at least 10 experiments out of the given list.

### **Recommended Books**

- 1. C.L. Arora, B. Sc. Practical Physics, S. Chand & Company Ltd.
- 2. B.L. Worshnop and H. T Flint, Advanced Practical Physics, KPH.

## Revised Scheme (ECE, CSE, ME)

Galaxy Global Group of Institutions, Ambala

### SCHEME OF STUDIES/EXAMINATIONS

### Semester – III

| S.  | Course No. | Course Title                 | Tea | aching | g Sch | nedule |        | Allotment | of Marks  |       | Duration |
|-----|------------|------------------------------|-----|--------|-------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                              | L   | T      | P     | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                              |     |        |       | Week   |        |           |           |       | (Hrs.)   |
| 1   | AS-201N    | Mathematics-III              | 3   | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | ECE-201N   | Signals & Systems            | 3   | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ECE-203N   | Electronic Devices           | 3   | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ECE-205N   | Network Analysis & Synthesis | 3   | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ECE-207N   | Digital Electronics          | 3   | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | ECE-209N   | Analog Communications        | 3   | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 7   | ECE-211N   | Signals & Systems Lab        | 0   | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | ECE-213N   | Digital Electronics Lab      | 0   | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
| 9   | ECE-215N   | Analog Communications Lab    | 0   | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Total                        | 18  | 6      | 9     | 33     | 450    | 270       | 180       | 900   |          |
| 10  | MPC-201N   | Environmental Studies*       | 3   | 0      | 0     | 3      | 75     | 25        | 0         | 100   | 3        |

<sup>\*</sup>MPC-201N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

### SCHEME OF STUDIES/EXAMINATIONS

### Semester – IV

| S.  | Course No. | Course Title                           | Teaching Schedule |   |   |        |        | Allotment | of Marks  |       | Duration |
|-----|------------|----------------------------------------|-------------------|---|---|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                        | L                 | T | P | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                        |                   |   |   | Week   |        |           |           |       | (Hrs.)   |
| 1   | HS-201N    | Fundamentals of Management             | 3                 | 0 | 0 | 3      | 75     | 25        | 0         | 100   | 3        |
| 2   | CSE-203N   | Data Structures & Algorithms           | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ECE-202N   | Electronics Measurements & Instruments | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ECE-204N   | Electromagnetic Theory                 | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ECE-206N   | Analog Electronics                     | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | ECE-208N   | Computer Architecture &                | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Organisation                           |                   |   |   |        |        |           |           |       |          |
| 7   | CSE-210N   | Data Structures Lab                    | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | ECE-212N   | Electronics Measurements &             | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Instruments Lab                        |                   |   |   |        |        |           |           |       |          |
| 9   | ECE-214N   | Analog Electronics Lab                 | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Total                                  | 18                | 5 | 9 | 32     | 450    | 270       | 180       | 900   |          |
| 10  | MPC-202N   | Energy Studies*                        | 3                 | 0 | 0 | 3      | 75     | 25        | 0         | 100   | 3        |

<sup>\*</sup>MPC-202N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

*Note:* All the students have to undergo six weeks industrial training after  $IV^{th}$  semester and it will be evaluated in  $V^{th}$  semester.

### SCHEME OF STUDIES/EXAMINATIONS

### Semester – V

| S.  | Course No. | Course Title               | Teaching Schedule |   |   |        |        | Allotment | of Marks  |       | Duration |
|-----|------------|----------------------------|-------------------|---|---|--------|--------|-----------|-----------|-------|----------|
| No. |            |                            | L                 | T | P | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                            |                   |   |   | Week   |        |           |           |       | (Hrs.)   |
| 1   | ECE-301N   | Microprocessors &          | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Interfacing                |                   |   |   |        |        |           |           |       |          |
| 2   | AS-303N    | Numerical Analysis         | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ECE-303N   | Antenna & Wave Propagation | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ECE-305N   | VLSI Technology            | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ECE-307N   | Control Systems            | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | HS-309N    | Business Intelligence &    | 3                 | 0 | 0 | 3      | 75     | 25        | 0         | 100   | 3        |
|     |            | Entrepreneurship           |                   |   |   |        |        |           |           |       |          |
| 7   | ECE-309N   | Microprocessors &          | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Interfacing Lab            |                   |   |   |        |        |           |           |       |          |
| 8   | ECE-311N   | Design Automation Lab      | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
| 9   | ECE-313N   | Antenna & Wave Propagation | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Lab                        |                   |   |   |        |        |           |           |       |          |
| 10  | ECE-315N   | Training Viva*             |                   |   |   |        | 0      | 100       | 0         | 100   |          |
|     |            | Total                      | 18                | 5 | 9 | 32     | 450    | 370       | 180       | 1000  |          |

<sup>\*</sup>The performance of the student will be evaluated after the presentation delivered and the report submitted by him/her related to Industrial training undertaken after  $IV^{th}$  semester.

### SCHEME OF STUDIES/EXAMINATIONS

### Semester – VI

| S.  | Course No. | Course Title                            | Te | eachir | ng Sch | nedule |        | Allotment | of Marks  |       | Duration |
|-----|------------|-----------------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                         | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                         |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | ECE-302N   | Digital Signal Processing               | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | ECE-304N   | Digital Design using Verilog            | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | CSE-309N   | Essentials of Information<br>Technology | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ECE-306N   | Digital Communication                   | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ECE-308N   | Computer Communication<br>Network       | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | ECE-310N   | Digital Signal Processing Lab           | 0  | 0      | 3      | 3      | 0      | 40        | 60        | 100   | 3        |
| 7   | ECE-312N   | Digital Design using Verilog<br>Lab     | 0  | 0      | 3      | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | ECE-314N   | Digital Communication Lab               | 0  | 0      | 3      | 3      | 0      | 40        | 60        | 100   | 3        |
| 9   | ECE-316N   | Personality & Soft Skills Development * | 3  | 0      | 0      | 3      | 0      | 200       | 0         | 200   | 3        |
|     |            | Total                                   | 18 | 5      | 9      | 32     | 375    | 445       | 180       | 1000  |          |

<sup>\*</sup>The student will be evaluated on the basis of technical seminar and technical group discussions of 100 marks each.

*Note:* All the students have to undergo six weeks industrial training after  $VI^{th}$  semester and it will be evaluated in  $VII^{th}$  semester.

SCHEME OF STUDIES/EXAMINATIONS

#### Semester – VII

| S.  | Course No. | Course Title                 | Te | eachin | g Sche | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                              | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                              |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | ECE-401N   | Microcontroller & Embedded   | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Systems Design               |    |        |        |        |        |           |           |       |          |
| 2   | ECE-403N   | Digital Image Processing     | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ECE-405N   | Power Electronics            | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   |            | DEC-I*                       | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   |            | DEC - II*                    | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | ECE-407N   | Microcontroller & Embedded   | 0  | 0      | 3      | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Systems Design Lab           |    |        |        |        |        |           |           |       |          |
| 7   | ECE-409N   | Digital Image Processing Lab | 0  | 0      | 3      | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | ECE-411N   | Project -I**                 | 0  | 0      | 8      | 3      | 0      | 100       | 100       | 200   | 3        |
| 9   | ECE-413N   | Training Viva***             |    |        |        |        | 0      | 100       | 0         | 100   |          |
|     |            | Total                        | 15 | 5      | 14     | 34     | 375    | 405       | 220       | 1000  |          |

<sup>\*</sup> The students should select two Departmental Elective Courses (DEC) from the following list.

| Course No. | Course Title                  | Course No. | Course Title                      |
|------------|-------------------------------|------------|-----------------------------------|
|            |                               |            |                                   |
| ECE-415N   | Advance Digital Communication | ECE-429N   | Consumer Electronics              |
| ECE-417N   | Nano Electronics              | ECE-431N   | Robotics                          |
| ECE-419N   | Optical Communications        | ECE-433N   | Non-Conventional Energy Resources |
| ECE-421N   | Adaptive Signal Processing    | ECE-435N   | Microstrip line Analysis          |
| ECE-423N   | Satellite Communication       | ECE-437N   | Cloud Computing                   |
| ECE-425N   | Digital VLSI Design           | ECE-439N   | Software Defined Radios           |
| ECE-427N   | Analog CMOS IC Design         |            |                                   |

<sup>\*\*</sup>The project should be initiated by the students in the beginning of VII<sup>th</sup> semester and will be evaluated at the end of the semester on the basis of a presentation and report.

<sup>\*\*\*</sup>The performance of the student will be evaluated after the presentation delivered and the report submitted by the student related to Industrial training undertaken after  $VI^{th}$  semester.

SCHEME OF STUDIES/EXAMINATIONS

### Semester – VIII

| S.  | Course No. | Course Title              | Teaching Schedule |   |    |        |        | Allotment | of Marks  |       | Duration |
|-----|------------|---------------------------|-------------------|---|----|--------|--------|-----------|-----------|-------|----------|
| No. |            |                           | L                 | T | P  | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                           |                   |   |    | Week   |        |           |           |       | (Hrs.)   |
| 1   | ECE-402N   | Wireless & Mobile         | 3                 | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Communication             |                   |   |    |        |        |           |           |       |          |
| 2   | ECE-404N   | Microwave Engineering     | 3                 | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   |            | DEC-III*                  | 3                 | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   |            | DEC – IV*                 | 3                 | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ECE-406N   | Project-II**              | 0                 | 0 | 12 | 12     | 0      | 100       | 100       | 200   | 3        |
| 6   | ECE-408N   | Wireless & Mobile         | 0                 | 0 | 3  | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Communication Lab         |                   |   |    |        |        |           |           |       |          |
| 7   | ECE-410N   | Microwave Engineering Lab | 0                 | 0 | 3  | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | ECE-436N   | General Fitness &         |                   |   |    |        | 0      | 100       | 100       | 200   | 3        |
|     |            | Professional Aptitude***  |                   |   |    |        |        |           |           |       |          |
|     |            | Total                     | 12                | 4 | 18 | 34     | 300    | 380       | 320       | 1000  |          |

<sup>\*</sup>The student should select two Departmental Elective Courses (DEC) from the following list.

| Course No. | Course Title                       | Course No. | Course Title                 |
|------------|------------------------------------|------------|------------------------------|
| ECE-412N   | DSP Processor                      | ECE-424N   | Biomedical Signal Processing |
| ECE-414N   | Mobile Communication Networks      | ECE-426N   | Multimedia Communications    |
| ECE-416N   | MEMS                               | ECE-428N   | Mixed VLSI Design            |
| ECE-418N   | Transducers & its Applications     | ECE-430N   | Microstrip Antenna           |
| ECE-420N   | Radar Engineering                  | ECE-432N   | Strategic Electronics        |
| ECE-422N   | High Frequency Circuit and Systems | ECE-434N   | Cognitive Radios             |

<sup>\*\*</sup>The project initiated by the students in VII<sup>th</sup> semester will be continued in VIII<sup>th</sup> semester and will be evaluated at the end of the semester on the basis of a presentation and report.

<sup>\*\*\*</sup>ECE-436 is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

### SCHEME OF STUDIES/EXAMINATIONS

### Semester – III

| S.  | Course No. | Course Title               | T  | eachin | g Sch | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|----------------------------|----|--------|-------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                            | L  | T      | P     | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                            |    |        |       | Week   |        |           |           |       | (Hrs.)   |
| 1   | HS-201N    | Fundamentals of Management | 3  | 0      | 0     | 3      | 75     | 25        | 0         | 100   | 3        |
| 2   | CSE-201N   | Discrete Structures        | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | CSE-203N   | Data Structures            | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | CSE-205N   | Database Management        | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Systems                    |    |        |       |        |        |           |           |       |          |
| 5   | ECE-207N   | Digital Electronics        | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | CSE-209N   | Programming Languages      | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 7   | CSE-211N   | Data Structures Lab        | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | ECE-213N   | Digital Electronics Lab    | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
| 9   | CSE-215N   | Data Base Management       | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Systems Lab                |    |        |       |        |        |           |           |       |          |
|     |            | Total                      | 18 | 5      | 9     | 32     | 450    | 270       | 180       | 900   |          |
| 10  | MPC-202N   | Energy Studies*            | 3  | 0      | 0     | 3      | 75     | 25        | 0         | 100   | 3        |

<sup>\*</sup>MPC-202N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

### SCHEME OF STUDIES/EXAMINATIONS

#### Semester – IV

| S.  | Course No. | Course Title                 | Teaching Schedule |   |   |        |        | Allotment | of Marks  |       | Duration |
|-----|------------|------------------------------|-------------------|---|---|--------|--------|-----------|-----------|-------|----------|
| No. |            |                              | L                 | T | P | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                              |                   |   |   | Week   |        |           |           |       | (Hrs.)   |
| 1   | AS-201N    | Mathematics-III              | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | CSE-202N   | Object Oriented Programming  | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | CSE-204N   | Internet Fundamental         | 3                 | 0 | 0 | 3      | 75     | 25        | 0         | 100   | 3        |
| 4   | CSE-206N   | Digital Data Communication   | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ECE-301N   | Microprocessor & Interfacing | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | CSE-210N   | Operating System             | 3                 | 1 | 0 | 4      | 75     | 25        | 0         | 100   | 3        |
| 7   | CSE-212N   | Object Oriented Programming  | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Lab                          |                   |   |   |        |        |           |           |       |          |
| 8   | ECE-311N   | Microprocessor Lab           | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
| 9   | CSE-216N   | Internet Lab                 | 0                 | 0 | 3 | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Total                        | 18                | 5 | 9 | 32     | 450    | 270       | 180       | 900   |          |
| 10  | MPC-201N   | Environmental Studies*       | 3                 | 0 | 0 | 3      | 75     | 25        | 0         | 100   | 3        |

<sup>\*</sup>MPC-201N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

*Note:* All the students have to undergo 4-6 six weeks industrial training after  $IV^{th}$  semester and it will be evaluated in  $V^{th}$  semester.

# $SCHEME\ OF\ STUDIES/EXAMINATIONS$

### Semester – V

| S.  | Course No. | Course Title                                | Teaching Schedule Allotment of Marks |   |    |        |        |           | Duration  |       |         |
|-----|------------|---------------------------------------------|--------------------------------------|---|----|--------|--------|-----------|-----------|-------|---------|
| No. |            |                                             | L                                    | T | P  | Hours/ | Theory | Sessional | Practical | Total | of Exam |
|     |            |                                             |                                      |   |    | Week   |        |           |           |       | (Hrs.)  |
| 1   | CSE-301N   | Automata Theory                             | 3                                    | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3       |
| 2   | CSE-303N   | Computer Networks                           | 3                                    | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3       |
| 3   | CSE-305N   | Design and Analysis of<br>Algorithms        | 3                                    | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3       |
| 4   | CSE-307N   | Computer Organisation and Architecture      | 3                                    | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3       |
| 5   | CSE-309N   | Essential of Information Technology         | 3                                    | 1 | 0  | 4      | 75     | 25        | 0         | 100   | 3       |
| 6   | CSE-311N   | Computer Network Lab                        | 0                                    | 0 | 3  | 3      | 0      | 40        | 60        | 100   | 3       |
| 7   | CSE-313N   | Design and Analysis of<br>Algorithms Lab    | 0                                    | 0 | 3  | 3      | 0      | 40        | 60        | 100   | 3       |
| 8   | CSE-315N   | Advance of Information<br>Technology Lab    | 0                                    | 0 | 3  | 3      | 0      | 40        | 60        | 100   | 3       |
| 9   | CSE-317N   | Seminar                                     | 0                                    | 0 | 2  | 2      | 0      | 40        | 60        | 100   | 3       |
| 10  | CSE-319N   | Technical Communication and Soft Skills Lab | 0                                    | 0 | 2  | 2      | 0      | 40        | 60        | 100   | 3       |
| 11  | CSE-321N   | Industrial Training (Viva-<br>Voce)*        |                                      |   |    |        |        | 40        | 60        | 100   |         |
|     |            | Total                                       | 15                                   | 5 | 13 | 33     | 375    | 365       | 360       | 1100  |         |

<sup>\*</sup>The performance of the student will be evaluated after the presentation delivered and the report submitted by him/her related to Industrial training undertaken after  $IV^{th}$  semester.

# SCHEME OF STUDIES/EXAMINATIONS

### Semester – VI

| S.  | Course No. | Course Title                       | Te | eachir | g Sch | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|------------------------------------|----|--------|-------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                    | L  | T      | P     | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                    |    |        |       | Week   |        |           |           |       | (Hrs.)   |
| 1   | CSE-302N   | Compiler Design                    | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | CSE-304N   | Simulation & Modellinig            | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | CSE-306N   | Mobile Computing                   | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | CSE-308N   | Computer Graphics and<br>Animation | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | CSE-310N   | Software Engineering               | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | CSE-312N   | Computer Graphics Lab              | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
| 7   | CSE-314N   | Simulation Lab                     | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
| 8   | CSE-316N   | Software Engineering Lab           | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Total                              | 15 | 5      | 9     | 29     | 375    | 245       | 180       | 800   |          |

*Note:* All the students have to undergo 4-6 weeks industrial training after  $VI^{th}$  semester and it will be evaluated in  $VII^{th}$  semester.

SCHEME OF STUDIES/EXAMINATIONS

#### Semester – VII

| S.  | Course No. | Course Title                            | To | eachir | ig Sch | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|-----------------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                         | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                         |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | CSE-401N   | Unix & Linux Programming                | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | CSE-403N   | Web Technology                          | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | HS-401N    | Entrepreneurship                        | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   |            | DEC-I*                                  | 3  | 0      | 0      | 3      | 75     | 25        | 0         | 100   | 3        |
| 5   |            | DEC-II*                                 | 3  | 0      | 0      | 3      | 75     | 25        | 0         | 100   | 3        |
| 6   | CSE-405N   | Web Technology Lab                      | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 7   | CSE-407N   | Project-I**                             | 0  | 0      | 8      | 8      | 0      | 100       | 100       | 200   | 3        |
| 8   | CSE-409N   | Computer Hardware & Troubleshooting Lab | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 9   | CSE-411N   | Seminar                                 | 0  | 0      | 2      | 2      | 0      | 100       | 0         | 100   |          |
| 10  | CSE-413N   | Industrial Training (Viva-              |    |        |        |        |        | 40        | 60        | 100   |          |
|     |            | Voce)***                                | 10 | 0      | 1.4    | 22     | 255    | 445       | 200       | 1100  |          |
|     |            | Total                                   | 18 | 0      | 14     | 32     | 375    | 445       | 280       | 1100  |          |

<sup>\*</sup> The students should select two Departmental Elective Courses (DEC) from the following list.

| Course No. | DEC-I                                | Course No. | DEC-II                     |
|------------|--------------------------------------|------------|----------------------------|
| CSE-415N   | Object Oriented Software Engineering | CSE-421N   | Agile Software Engineering |
| CSE-417N   | Big Data and Analytics               | CSE-423N   | Parallel Computing         |
| CSE-419N   | Cryptography & Information Security  | CSE-425N   | Expert Systems             |

<sup>\*\*</sup>The project should be initiated by the students in the beginning of VII<sup>th</sup> semester and will be evaluated at the end of the semester on the basis of a presentation and report.

<sup>\*\*\*</sup>The performance of the student will be evaluated after the presentation delivered and the report submitted by the student related to Industrial training undertaken after VI<sup>th</sup> semester.

SCHEME OF STUDIES/EXAMINATIONS

#### Semester – VIII

| S.  | Course No. | Course Title                   | Γ  | eachir | ng Sch | nedule |        | Allotment | of Marks  |       | Duration |
|-----|------------|--------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | CSE-402N   | Neural Networks & Fuzzy        | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Logic                          |    |        |        |        |        |           |           |       |          |
| 2   |            | DEC-III*                       | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   |            | DEC-IV*                        | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | CSE-404N   | Mobile Apps Development        | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | CSE-406N   | Mobile Apps Development        | 0  | 0      | 3      | 3      | 0      | 40        | 60        | 100   | 3        |
|     |            | Lab                            |    |        |        |        |        |           |           |       |          |
| 6   | CSE-408N   | Project-II**                   | 0  | 0      | 16     | 16     | 0      | 100       | 100       | 200   | 3        |
|     |            | Total                          | 16 | 0      | 19     | 35     | 300    | 240       | 160       | 700   |          |
| 7   | CSE-410N   | General Fitness & Professional |    |        |        |        |        | 100       |           | 100   |          |
|     |            | Aptitude***                    |    |        |        |        |        |           |           |       |          |

\*The student should select two Departmental Elective Courses (DEC) from the following list.

| Course No. | DEC-III                     | Course No. | DEC-IV                       |
|------------|-----------------------------|------------|------------------------------|
| CSE-412N   | Software Project Management | CSE-418N   | Cloud Computing              |
| CSE-414N   | Cycber Security             | CSE-420N   | Graph Theory                 |
| CSE-416N   | Data Mining                 | CSE-422N   | Natural Language Programming |

<sup>\*\*</sup>The project initiated by the students in VII<sup>th</sup> semester will be continued in VIII<sup>th</sup> semester and will be evaluated at the end of the semester on the basis of a presentation and report.

<sup>\*\*\*</sup>CSE-410 is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

# SCHEME OF STUDIES/EXAMINATIONS

### Semester – III

| S.  | Course No. | Course Title                   | Te | eachir | ng Sch | nedule |        | Allotment | of Marks  |       | Duration |
|-----|------------|--------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | AS-201N/   | Mathematics –III/ Fundamentals | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
|     | HS-201N    | of Management                  |    |        |        |        |        |           |           |       |          |
| 2   | ME-201N    | Basic Thermodynamics           | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ME-203N    | Mechanics of Solid –I          | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ME-205N    | Machine Drawing                | 2  | 0      | 3      | 5      | 75     | 25        | 0         | 100   | 3        |
| 5   | ME-207N    | Kinematics of Machines         | 3  | 1      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | ME-209N    | Material Science               | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 7   | ME-211N    | Kinematics of Machine Lab      | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 8   | ME-213N    | Material Science Lab           | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 9   | ME-215N    | Mechanics of Solid Lab         | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
|     |            | Total                          | 18 | 4      | 9      | 31     | 450    | 270       | 180       | 900   |          |
| 10  | MPC-201N   | Environmental Studies*         | 3  | 0      | 0      | 3      | 75     | 25        | 0         | 100   | 3        |

<sup>\*</sup>MPC-201N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

### SCHEME OF STUDIES/EXAMINATIONS

### Semester – IV

| S.  | Course No. | Course Title                 | T  | eachin | g Sch | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|------------------------------|----|--------|-------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                              | L  | T      | P     | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                              |    |        |       | Week   |        |           |           |       | (Hrs.)   |
| 1   | AS-201N/   | Mathematics –III/            | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
|     | HS-201N    | Fundamentals of Management   |    |        |       |        |        |           |           |       |          |
| 2   | ME-202N    | Production Technology-I      | 4  | 0      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ME-204N    | Steam Generation & Power     | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ME-206N    | Mechanics of Solid-II        | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ME-208N    | Fluid Mechanics              | 4  | 1      | 0     | 5      | 75     | 25        | 0         | 100   | 3        |
| 6   | ME-210N    | Dynamics of Machine          | 3  | 1      | 0     | 4      | 75     | 25        | 0         | 100   | 3        |
| 7   | ME-214N    | Fluid Mechanics Lab          | 0  | 0      | 2     | 2      | 0      | 40        | 60        | 100   | 3        |
| 8   | ME-216N    | Dynamics of Machine Lab      | 0  | 0      | 2     | 2      | 0      | 40        | 60        | 100   | 3        |
| 9   | ME-218N    | Steam Generation & Power Lab | 0  | 0      | 2     | 2      | 0      | 40        | 60        | 100   | 3        |
| 10  | ME-220N    | Production Technology Lab    | 0  | 0      | 3     | 3      | 0      | 40        | 60        | 100   |          |
|     |            | Total                        | 20 | 5      | 9     | 34     | 450    | 310       | 240       | 1000  |          |
| 10  | MPC-202N   | Energy Studies*              | 3  | 0      | 0     | 3      | 75     | 25        | 0         | 100   | 3        |

<sup>\*</sup>MPC-202N is a mandatory course and student has to get passing marks in order to qualify for the award of degree but its marks will not be added in the grand total.

*Note:* All the students have to undergo six weeks industrial training after  $IV^{th}$  semester and it will be evaluated in  $V^{th}$  semester.

# $SCHEME\ OF\ STUDIES/EXAMINATIONS$

### Semester – V

| S.  | Course No. | Course Title               | T  | eachi | ng Scl | hedule |        | Allotment | of Marks  |       | Duration |
|-----|------------|----------------------------|----|-------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                            | L  | T     | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                            |    |       |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | ME-301N    | I.C. Engine & Gas Turbine  | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | ME-303N    | Fluid Machines             | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | ME-305N    | Heat Transfer              | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ME-307N    | Industrial Engineering     | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ME-309N    | Machine Design-I           | 2  | 0     | 4      | 6      | 75     | 25        | 0         | 100   | 3        |
| 6   | ME-311N    | Production Technology-II   | 4  | 0     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 7   | ME-313N    | I.C. Engine Lab            | 0  | 0     | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 8   | ME-315N    | Fluid Machines Lab         | 0  | 0     | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 9   | ME-317N    | Heat Transfer Lab          | 0  | 0     | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 10  | ME-319N    | Industrial Training (Viva- | 0  | 0     | 0      | 0      | 0      | 40        | 60        | 100   | 3        |
|     |            | Voce)*                     |    |       |        |        |        |           |           |       |          |
|     |            | Total                      | 18 | 4     | 10     | 32     | 450    | 310       | 240       | 1000  |          |

<sup>\*</sup>The performance of the student will be evaluated after the presentation delivered and the report submitted by him/her related to Industrial training undertaken after  $IV^{th}$  semester.

# SCHEME OF STUDIES/EXAMINATIONS

### Semester – VI

| S.  | Course No. | Course Title              | T  | eachi | ng Sch | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|---------------------------|----|-------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                           | L  | T     | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                           |    |       |        | Week   |        |           |           |       | (Hrs.)   |
|     |            |                           |    |       |        |        |        |           |           |       |          |
| 1   | ME-302N    | Refrigeration and Air     | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Conditioning              |    |       |        |        |        |           |           |       |          |
| 2   | ME-304N    | Tribology & Mechanical    | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Vibration                 |    |       |        |        |        |           |           |       |          |
| 3   | ME-306N    | Operation Research        | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | CSE-209N   | Essentials of IT          | 3  | 1     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ME-308N    | Computer Aided Design and | 4  | 0     | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
|     |            | Manufacturing             |    |       |        |        |        |           |           |       |          |
| 6   | ME-310N    | Machine Design-II         | 2  | 0     | 4      | 6      | 75     | 25        | 0         | 100   | 3        |
| 7   | ME-312N    | Refrigeration and Air     | 0  | 0     | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
|     |            | Conditioning Lab          |    |       |        |        |        |           |           |       |          |
| 8   | ME-314N    | Tribology & Mechanical    | 0  | 0     | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
|     |            | Vibration Lab             |    |       |        |        |        |           |           |       |          |
| 9   | ME-316N    | Computer Aided Design and | 0  | 0     | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
|     |            | Manufacturing Lab         |    |       |        |        |        |           |           |       |          |
|     |            | Total                     | 18 | 4     | 10     | 32     | 450    | 270       | 180       | 900   |          |

*Note:* All the students have to undergo six weeks industrial training after VI<sup>th</sup> semester and it will be evaluated in VII<sup>th</sup> semester.

SCHEME OF STUDIES/EXAMINATIONS

#### Semester – VII

| S.  | Course  | Course Title                       | To | eachir | ng Sch | nedule |        | Allotment | of Marks  |       | Duration |
|-----|---------|------------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. | No.     |                                    | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |         |                                    |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | ME-401N | Measurement and Control            | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   | ME-403N | Mechatronics                       | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   | HS-301N | Entrepreneurship                   | 3  | 0      | 0      | 3      | 75     | 25        | 0         | 100   | 3        |
| 4   |         | DEC – I*                           | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   |         | DEC -II*                           | 3  | 0      | 0      | 3      | 75     | 25        | 0         | 100   | 3        |
| 6   | ME-405N | Measurement & Control Lab          | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 7   | ME-407N | Mechatronics Lab                   | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 8   | ME-409N | Project-I**                        | 0  | 0      | 8      | 8      | 0      | 100       | 100       | 200   |          |
| 9   | ME-411N | Industrial Training (Viva-Voce)*** | 0  | 0      | 0      | 0      | 0      | 40        | 60        | 100   |          |
| 10  | ME-413N | Seminar-I                          | 0  | 0      | 2      | 2      | -      | 50        | 50        | 100   |          |
|     |         | Total                              | 18 | 0      | 16     | 32     | 375    | 395       | 330       | 1100  |          |

<sup>\*</sup> The students should select two Departmental Elective Courses (DEC) from the following list.

| Course No. | DEC-I                                | Course No. | DEC-II                                |
|------------|--------------------------------------|------------|---------------------------------------|
| ME-413N    | Non-Conventional Machining           | ME-425N    | Finite Element Methods in Engineering |
| ME-415N    | Soft Computing Techniques            | ME-427N    | Advanced Manufacturing Technology     |
| ME-417N    | Non-Destructive Evaluation & Testing | ME-429N    | Robotics: Mechanics and Control       |
| ME-419N    | Design and Optimization              | ME-431N    | Simulation of Mechanical Systems      |
| ME-421N    | Computational Fluid Dynamics         | ME-433N    | Control Engineering                   |
| ME-423N    | Fundamental of Gas Dynamics          | ME-435N    | Environmental Pollution and Abatement |

<sup>\*\*</sup>The project should be initiated by the students in the beginning of VII<sup>h</sup> semester and will be evaluated at the end of the semester on the basis of a presentation and report.

<sup>\*\*\*</sup>The performance of the student will be evaluated after the presentation delivered and the report submitted by the student related to Industrial training undertaken after  $VI^{th}$  semester.

SCHEME OF STUDIES/EXAMINATIONS

#### Semester – VIII

| S.  | Course No. | Course Title                    | Г  | Ceachi | ng Sch | edule  |        | Allotment | of Marks  |       | Duration |
|-----|------------|---------------------------------|----|--------|--------|--------|--------|-----------|-----------|-------|----------|
| No. |            |                                 | L  | T      | P      | Hours/ | Theory | Sessional | Practical | Total | of Exam  |
|     |            |                                 |    |        |        | Week   |        |           |           |       | (Hrs.)   |
| 1   | ME-402N    | Automobile Engineering          | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 2   |            | DEC-III*                        | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 3   |            | DEC-IV*                         | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 4   | ME-404N    | Power Plant Engineering         | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 5   | ME-406N    | Quality Assurance & Reliability | 4  | 0      | 0      | 4      | 75     | 25        | 0         | 100   | 3        |
| 6   | ME-408N    | Automobile Engineering Lab      | 0  | 0      | 2      | 2      | 0      | 40        | 60        | 100   | 3        |
| 7   | ME-410N    | Project-II**                    | 0  | 0      | 10     | 10     | 0      | 100       | 100       | 200   |          |
| 8   | ME-412N    | Seminar                         | 0  | 0      | 2      | 2      | 0      | 100       | 0         | 100   |          |
|     |            | Total                           | 20 | 0      | 14     | 34     | 375    | 365       | 160       | 900   |          |

\*The student should select two Departmental Elective Courses (DEC) from the following list.

| Course No. | DEC-III                              | Course No. | DEC-IV                                |
|------------|--------------------------------------|------------|---------------------------------------|
| ME-414N    | Smart Materials Structures & Devices | ME-426N    | Manufacturing Management              |
| ME-416N    | Lubrication Technology               | ME-428N    | Design of Pressure Vessels and Piping |
| ME-418N    | Energy Management                    | ME-430N    | Concurrent Engineering                |
| ME-420N    | Waste Heat Recovery System           | ME-432N    | Industrial Combustion                 |
| ME-422N    | Foundary Engineering                 | ME-434N    | Metal Forming and Finishing           |
| ME-424N    | Ergonomics in Design                 | ME-436N    | Air Craft and Rocket Propulsion       |

<sup>\*\*</sup>The project should be initiated by the students in the beginning of VIII<sup>th</sup> semester and will be evaluated at the end of the semester on the basis of a presentation and report.

*Note:* Project-II should not be related to Project-I unless it involves large amount of work, time and effort.