Rol	l No.	Total Pages : 04		
		BT-1/D-21 41014		
		APPLIED PHYSICS-I		
		AS-101-N		
Tim	ne : T	Three Hours] [Maximum Marks : 75		
Note: Attempt Five questions in all, selecting at least one				
		question from each Unit. All questions carry equal		
		marks.		
Unit I				
1.	(a)	Obtain the conditions for the interference of light		
		reflected by a thin parallel film.		
	(b)	What do you understand by Fresnal's biprism ?		
		Derive an expression to determine the wavelength		
		of light using Fresnel's biprism.		
	(c)	Explain why the centre of Newton's rings is dark.		
		How can it be made bright?		
2.	(a)	What are the differences between Fraunhofer and		
		Fresnel diffraction ? 5		

(b)

Explain method of wavelength determination by

grating. What is dispersive power of a grating ?8

		Unit II
3.	(a)	Explain what is population inversion and pumping
		in lasers. 5
	(b)	With neat diagrams, describe the principle,
		construction and working of He-Ne laser. Discuss
		the applications of lasers. 10
4.	(a)	Describe the construction of a nicol prism and show
		how it can be used as a polarizer or an analyser.
		Distinguish between quarter-wave plate and half-
		wave plate. 10
	(b)	What is double refraction?
	(c)	Determine the SI units of energy density $u(\omega)$,
		Einstein's coefficients A and B.
		Unit III
5.	(a)	What is Piezoelectric effect ? Explain how
		Ultrasonics can be generated by piezoelectric
		phenomena. 7
	(b)	What is Magnetostriction?
(5)L-41014		4 2
` '		

The wavelength of sodium D-lines is 589.5 Å and

588.9 Å. What is the minimum number of lines a

grating must have in order to resolve these lines in

2

the first order spectrum?

(c)

- (c) Describe a method used for measuring velocity of ultrasonic waves.5
- 6. (a) Describe the construction of an optical fibre with the help of a suitable diagram. Further describe different factors responsible for loss of signal propagating through a fibre.
 8
 - (b) Calculate the numerical aperture and acceptance of an optical fibre with $n_1 = 1.50$ and $n_2 = 1.45$. 3
 - (c) Differentiate between step index and graded index fibre.

Unit IV

- 7. (a) Prove that under condition (v < < c), relativistic kinetic energy, changes to classical kinetic energy. 3
 - (b) State postulates of special theory of relativity and using them derive Lorentz transformation equation.

6

- (c) Derive Energy mass relation. Compute the mass and velocity of an electron having kinetic energy 1.5 MeV.
- 8. (a) Describe construction, working and application of Scintillation Counter. Explain why scintillation detectors are more sensitive that gas-filled detectors.

8

- (b) Describe the three modes by which gamma radiations interact with matter.
- (c) With the help of GM counter is it possible to give information about energy of the incident charge particle? Justify your answer.3