Roll No. Total Pages: 02

MT/D-21 49061

VLSI SIGNAL PROCESSING MTECE-105N

Time : Three Hours] [Maximum Marks : 60

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. Explain the representation of DSP algorithms by using block diagram, signal flow graph and data flow graph by considering the system with output : 12 $y[n] = h_0 x[n] + h_1 x[n-1] + h_2 x[n-2] + h_3 x[n-3].$
- 2. Describe any two iteration bound algorithms by taking an example.12

Unit II

3. (a) Explain Pipelining and Parallel processing for low power.8

1

(2)L-49061

		first breaking up the multiply-add operation into 2 components and by redistributing the delay elements	
		in the loop. 4	
4.	(a)	Explain the properties of retiming. 8	
	(b)	Assuming $w_r(e_j) = w_{r.\text{max}}$. Prove that $w_r(e_j) = w_{\text{max}}$	
		+ r(U) - r(U).	
Unit III			
5.	(a)	Any feasible clock cycle period that can be obtained by retiming the J-unfolded DFG, G_i , can be achieved by retiming the original DFG, G_i , directly and then	
	24.5	unfolding it by unfolding factor J. 6	
	(b)	Explain bit-level parallel processing. 6	
6.	Explain Lifetime analysis and folding of multirate systems.		
		12	
		Unit IV	
7.		Describe interleaved floorplan and bit plane based digital filters.	
	THICH	5. 12	
8.	Explain CORDIC algorithm in detail. 12		
(2)L-49061 2			

Consider a recursive filter x(n) = ax(n-2) + u(n). Pipeline this multiply-add operator by 2 stages, by

(b)