Roll No.

Total Pages : 3

GSM/D-21

1201

COMPUTER ORIENTED NUMERICAL METHODS Paper–BCA-236

Time : Three Hours]

[Maximum Marks: 80

Compulsory Question

1.	Attempt the following question in short :					
	(a)	Discuss Euler modified method.	2			
	(b)	Explain Trapezoidal and Simpson rules.	2			
	(c)	Discuss predictor-carrector methods.	2			
	(d)	Discuss orthogonal properties.	2			
	(e)	Explain Truncation.	2			
	(f)	Explain Taylor-Series method.	2			
	(g)	Explain Bisection method.	2			
	(h)	Discuss Pitfalls in differentiation.	2			

UNIT-I

- 2. (a) Apply Bairstow method to find quardratic factors of the equation $x^4 + 5x^3 + 3x^2 - 5x - 9 = 0$ close to $x^2 + 3x - 5$.
 - (b) Calculate the value of polynomial $x^3 4x^2 + 0.1x 0.5$ for x = 4.011 using the floating point arithmatic with 4 digit mantissa in two different ways. Also find the relative error under both the methods. 8

1201//KD/310

[P.T.O.

3. Using Newton-Raphson formula, prove that the iterative

formula for finding square root of N is $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$.

Hence find the value of :

(a)
$$\sqrt{35}$$
.

(b) $\sqrt{20}$.

(c)
$$\sqrt{15}$$
. 16

UNIT-II

4. (a) Apply Gauss-Seidel iteration method to solve the following equation
20x + y - 2z = 17, 3x + 20y - z = -18,
2x - 3y + 20z = 25.
8
(b) Using Runge-Kutta method of order 4, find y for

$$x = 0.1, 0.2, 0.3$$
 given that $\frac{dy}{dx} = xy + y^2, y(0) = 1.$

Continue the solution at x = 0.4 using Milne-Simpson's method. 8

5. Given
$$\frac{dy}{dx} = 1 + y^2$$
, where $y = 0$ when $x = 0$ find $y(0.2)$,
y (0.4) and y(0.6). 16

1201//KD/310

UNIT-III

- 6. Approximate $f(x) = \sin x$; $0 \le x \le 0.2$ by a 4th degree (a) Taylor's polynomial. 8
 - Prove that polynomial of best approximation of degree (b) not exceeding 3 for (x) in the interval [-1, 1] is $x^2 + \frac{1}{8}$. 8
- 7. (a) Use Chebyshev's quardrature formulae to evaluate

$$\int_{5}^{12} \frac{1}{x} dx.$$
 8

(b) Evaluate $\int_{-\infty}^{0.7} x \frac{1}{2} e^{-x} dx$ approximately by using suitable 8

formule.

UNIT-IV

- Evaluate the integral $\int_{-2}^{4} (2x^3 3x^2 + 1) dx$ by using Gauss's 8. quardrature formula. 16
- Find the value of f'(x) at x = 0.4 from the following table : 9.

x	0.01	0.02	0.03	0.04	0.05	0.06
f(x)	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

16

1201//KD/310